Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fang Xiong is active.

Publication


Featured researches published by Fang Xiong.


Molecular Cancer | 2017

Circular RNAs in human cancer

Yumin Wang; Yongzhen Mo; Zhaojian Gong; Xiang Yang; Mo Yang; Shanshan Zhang; Fang Xiong; Bo Xiang; Ming Zhou; Qianjin Liao; Wenling Zhang; Li X; Xiaoling Li; Yong Li; Guiyuan Li; Zhaoyang Zeng; Wei Xiong

CircRNAs are a novel type of RNAs. With the newly developed technology of next-generation sequencing (NGS), especially RNA-seq technology, over 30,000 circRNAs have already been found. Owing to their unique structure, they are more stable than linear RNAs. CircRNAs play important roles in the carcinogenesis of cancer. The expression of circRNAs is correlated with patients’ clinical characteristics, and circRNAs play a vital role in many aspects of malignant phenotypes, including cell cycle, apoptosis, vascularization, and invasion; metastasis as a RNA sponge, binding to RBP; or translation. Therefore, it is meaningful to further study the mechanism of interactions between circRNAs and tumors. The role of circRNAs as molecular markers or potential targets will provide promising application perspectives, such as early tumor diagnosis, therapeutic evaluation, prognosis prediction, and even gene therapy for tumors.


PLOS ONE | 2014

LOC401317, a p53-regulated long non-coding RNA, inhibits cell proliferation and induces apoptosis in the nasopharyngeal carcinoma cell line HNE2

Zhaojian Gong; Shanshan Zhang; Zhaoyang Zeng; Han-Jiang Wu; Qian Yang; Fang Xiong; Lei Shi; Jianbo Yang; Wenling Zhang; Yanhong Zhou; Yong Zeng; Li X; Bo Xiang; Shuping Peng; Ming Zhou; Xiaoling Li; Ming Tan; Yong Li; Wei Xiong; Guiyuan Li

Recent studies have revealed that long non-coding RNAs participate in all steps of cancer initiation and progression by regulating protein-coding genes at the epigenetic, transcriptional, and post-transcriptional levels. Long non-coding RNAs are in turn regulated by other genes, forming a complex regulatory network. The regulation networks between the p53 tumor suppressor and these RNAs in nasopharyngeal carcinoma remains unclear. The aims of this study were to investigate the regulatory roles of the TP53 gene in regulating long non-coding RNA expression profiles and to study the function of a TP53-regulated long non-coding RNA (LOC401317) in the nasopharyngeal carcinoma cell line HNE2. Long non-coding RNA expression profiling indicated that 133 long non-coding RNAs were upregulated in the human NPC cell line HNE2 cells following TP53 overexpression, while 1057 were downregulated. Among these aberrantly expressed long non-coding RNAs, LOC401317 was the most significantly upregulated one. Further studies indicated that LOC401317 is directly regulated by p53 and that ectopic expression of LOC401317 inhibits HNE2 cell proliferation in vitro and in vivo by inducing cell cycle arrest and apoptosis. LOC401317 inhibited cell cycle progression by increasing p21 expression and decreasing cyclin D1 and cyclin E1 expression and promoted apoptosis through the induction of poly(ADP-ribose) polymerase and caspase-3 cleavage. Collectively, these results suggest that LOC401317 is directly regulated by p53 and exerts antitumor effects in HNE2 nasopharyngeal carcinoma cells.


Molecular Cancer | 2017

Linking long non-coding RNAs and SWI/SNF complexes to chromatin remodeling in cancer

Yanyan Tang; Wang J; Yu Lian; Chunmei Fan; Ping Zhang; Yingfen Wu; Li X; Fang Xiong; Xiaoling Li; Guiyuan Li; Wei Xiong; Zhaoyang Zeng

Chromatin remodeling controls gene expression and signaling pathway activation, and aberrant chromatin structure and gene dysregulation are primary characteristics of human cancer progression. Recent reports have shown that long non-coding RNAs (lncRNAs) are tightly associated with chromatin remodeling. In this review, we focused on important chromatin remodelers called the switching defective/sucrose nonfermenting (SWI/SNF) complexes, which use the energy of ATP hydrolysis to control gene transcription by altering chromatin structure. We summarize a link between lncRNAs and the SWI/SNF complexes and their role in chromatin remodeling and gene expression regulation in cancer, thereby providing systematic information and a better understanding of carcinogenesis.


Oncotarget | 2016

Epstein-Barr virus encoded miR-BART11 promotes inflammation-induced carcinogenesis by targeting FOXP1

Yali Song; Xiaoling Li; Zhaoyang Zeng; Qiao Li; Zhaojian Gong; Qianjin Liao; Li X; Pan Chen; Bo Xiang; Wenling Zhang; Fang Xiong; Yanhong Zhou; Ming Zhou; Jian Ma; Yong Li; Xiang Chen; Guiyuan Li; Wei Xiong

Epstein-Barr virus (EBV) infection and chronic inflammation are closely associated with the development and progression of nasopharyngeal carcinoma (NPC) and gastric cancer (GC), and the infiltration of inflammatory cells, including tumor-associated macrophages (TAMs), is often observed in these cancers. EBV encodes 44 mature micro RNAs (miRNAs), but the roles of only a few EBV-encoded miRNA targets are known in cancer development, and here, our aim was to elucidate the effects of EBV-miR-BART11 on FOXP1 expression, and potential involvement in inflammation-induced carcinogenesis. We constructed an EBV miRNA-dependent gene regulatory network and predicted that EBV-miR-BART11 is able to target forkhead box P1 (FOXP1), a key molecule involved in monocyte to macrophage differentiation. Here, using luciferase reporter assay, we confirmed that EBV-miR-BART11 directly targets the 3′-untranslated region of FOXP1 gene, inhibits FOXP1 induction of TAM differentiation, and the secretion of inflammatory cytokines into the tumor microenvironment, inducing the proliferation of NPC and GC cells. FOXP1 overexpression hindered monocyte differentiation and inhibited NPC and GC cells growth. Our results demonstrated that EBV-miR-BART11 plays a crucial role in the promotion of inflammation-induced NPC and GC carcinogenesis by inhibiting FOXP1 tumor-suppressive effects. We showed a novel EBV-dependent mechanism that may induce the carcinogenesis of NPC and GC, which may help define new potential biomarkers and targets for NPC and GC diagnosis and treatment.


Oncotarget | 2017

Co-expression of AFAP1-AS1 and PD-1 predicts poor prognosis in nasopharyngeal carcinoma

Yanyan Tang; Yi He; Lei Shi; Liting Yang; Wang J; Yu Lian; Chunmei Fan; Ping Zhang; Can Guo; Shanshan Zhang; Zhaojian Gong; Li X; Fang Xiong; Xiaoling Li; Yong Li; Guiyuan Li; Wei Xiong; Zhaoyang Zeng

Nasopharyngeal carcinoma (NPC) carries a high potential for metastasis and immune escape, with a great risk of relapse after primary treatment. Through analysis of whole genome expression profiling data in NPC samples, we found that the expression of a long non-coding RNA (lncRNA), actin filament-associated protein 1 antisense RNA 1 (AFAP1-AS1), is significantly correlated with the immune escape marker programmed death 1 (PD-1). We therefore assessed the expression of AFAP1-AS1 and PD-1 in a cohort of 96 paraffin-embedded NPC samples and confirmed that AFAP1-AS1 and PD-1 are co-expressed in infiltrating lymphocytes in NPC tissue. Moreover, patients with high expression of AFAP1-AS1 or PD-1 in infiltrating lymphocytes were more prone to distant metastasis, and NPC patients with positive expression of both AFAP1-AS1 and PD-1 had the poorest prognosis. This study suggests that AFAP1-AS1 and PD-1 may be potential therapeutic targets in NPC and that patients with co-expression of AFAP1-AS1 and PD-1 may be ideal candidates for future clinical trials of anti-PD-1 immune therapy.


Molecular Cancer | 2018

Circular RNAs function as ceRNAs to regulate and control human cancer progression

Yaxian Zhong; Yajun Du; Xue Yang; Yongzhen Mo; Chunmei Fan; Fang Xiong; Daixi Ren; Xin Ye; Chunwei Li; Yumin Wang; Fang Wei; Can Guo; Xu Wu; Xiaoling Li; Yong Li; Guiyuan Li; Zhaoyang Zeng; Wei Xiong

Circular RNAs (circRNAs) are connected at the 3′ and 5′ ends by exon or intron cyclization, forming a complete ring structure. circRNA is more stable and conservative than linear RNA and abounds in various organisms. In recent years, increasing numbers of reports have found that circRNA plays a major role in the biological functions of a network of competing endogenous RNA (ceRNA). circRNAs can compete together with microRNAs (miRNAs) to influence the stability of target RNAs or their translation, thus, regulating gene expression at the transcriptional level. circRNAs are involved in biological processes such as tumor cell proliferation, apoptosis, invasion, and migration as ceRNAs. circRNAs, therefore, represent promising candidates for clinical diagnosis and treatment. Here, we review the progress in studying the role of circRNAs as ceRNAs in tumors and highlight the participation of circRNAs in signal transduction pathways to regulate cellular functions.


Journal of Virology | 2017

Genome-wide analysis of 18 Epstein-Barr viruses isolated from primary nasopharyngeal carcinoma biopsy specimens

Chaofeng Tu; Zhaoyang Zeng; Peng Qi; Li X; Zhengyuan Yu; Can Guo; Fang Xiong; Bo Xiang; Ming Zhou; Zhaojian Gong; Qianjin Liao; Jianjun Yu; Yi He; Wenling Zhang; Xiaoling Li; Yong Li; Guiyuan Li; Wei Xiong

ABSTRACT Epstein-Barr virus (EBV) is a ubiquitous gammaherpesvirus that is highly prevalent in almost all human populations and is associated with many human cancers, such as nasopharyngeal carcinoma (NPC), Hodgkins disease, and gastric carcinoma. However, in these EBV-associated cancers, only NPC exhibits remarkable ethnic and geographic distribution. We hypothesized that EBV genomic variations might contribute to the pathogenesis of different human cancers in different geographic areas. In this study, we collected 18 NPC biopsy specimens from the Hunan Province in southern China and de novo assembled 18 NPC biopsy specimen-derived EBV (NPC-EBV) genomes, designated HN1 to HN18. This was achieved through target enrichment of EBV DNA by hybridization, followed by next-generation sequencing, to reveal sequence diversity. These EBV genomes harbored 20,570 variations totally, including 20,328 substitutions, 88 insertions, and 154 deletions, compared to the EBV reference genome. Phylogenetic analysis revealed that all NPC-EBV genomes were distinct from other EBV genomes. Furthermore, HN1 to HN18 had some nonsynonymous variations in EBV genes including genes encoding latent, early lytic, and tegument proteins, such as substitutions within transmembrane domains 1 and 3 of LMP1, FoP_duplication, and zf-AD domains of ENBA1, in addition to aberrations in noncoding regions, especially in BamHI A rightward transcript microRNAs. These variations might have potential biological significance. In conclusion, we reported a genome-wide view of sequence variation in EBV isolated from primary NPC biopsy specimens obtained from the Hunan Province. This might contribute to further understanding of how genomic variations contribute to carcinogenesis, which would impact the treatment of EBV-associated cancer. IMPORTANCE Nasopharyngeal carcinoma (NPC) is highly associated with Epstein-Barr virus (EBV) infection and exhibits remarkable ethnic and geographic distribution. Hunan Province in southern China has a high incidence rate of NPCs. Here, we report 18 novel EBV genome sequences from viruses isolated from primary NPC biopsy specimens in this region, revealing whole-genome sequence diversity.


Molecular Cancer | 2017

Role of long non-coding RNAs in glucose metabolism in cancer

Chunmei Fan; Yanyan Tang; Jinpeng Wang; Fang Xiong; Can Guo; Yumin Wang; Shanshan Zhang; Zhaojian Gong; Fang Wei; Liting Yang; Yi He; Ming Zhou; Xiaoling Li; Guiyuan Li; Wei Xiong; Zhaoyang Zeng

Long-noncoding RNAs (lncRNAs) are a group of transcripts that are longer than 200 nucleotides and do not code for proteins. However, this class of RNAs plays pivotal regulatory roles. The mechanism of their action is highly complex. Mounting evidence shows that lncRNAs can regulate cancer onset and progression in a variety of ways. They can not only regulate cancer cell proliferation, differentiation, invasion and metastasis, but can also regulate glucose metabolism in cancer cells through different ways, such as by directly regulating the glycolytic enzymes and glucose transporters (GLUTs), or indirectly modulating the signaling pathways. In this review, we summarized the role of lncRNAs in regulating glucose metabolism in cancer, which will help understand better the pathogenesis of malignant tumors. The understanding of the role of lncRNAs in glucose metabolism may help provide new therapeutic targets and novel diagnostic and prognosis markers for human cancer.


British Journal of Cancer | 2018

BPIFB1 (LPLUNC1) inhibits migration and invasion of nasopharyngeal carcinoma by interacting with VTN and VIM

Fang Wei; Yingfen Wu; Le Tang; Yi He; Lei Shi; Fang Xiong; Zhaojian Gong; Can Guo; Li X; Qianjin Liao; Wenling Zhang; Ming Zhou; Bo Xiang; Xiaoling Li; Yong Li; Guiyuan Li; Wei Xiong; Zhaoyang Zeng

Background:Bactericidal/Permeability-increasing-fold-containing family B member 1 (BPIFB1, previously termed LPLUNC1) is highly expressed in the nasopharynx, significantly downregulated in nasopharyngeal carcinoma (NPC), and associated with prognosis in NPC patients. Because metastasis represents the primary cause of NPC-related death, we explored the role of BPIFB1 in NPC migration and invasion.Methods:The role of BPIFB1 in NPC metastasis was investigated in vitro and in vivo. A co-immunoprecipitation assay coupled with mass spectrometry was used to identify BPIFB1-binding proteins. Additionally, western blotting, immunofluorescence, and immunohistochemistry allowed assessment of the molecular mechanisms associated with BPIFB1-specific metastatic inhibition via vitronectin (VTN) and vimentin (VIM) interactions.Results:Our results showed that BPIFB1 expression markedly inhibited NPC cell migration, invasion, and lung-metastatic abilities. Additionally, identification of two BPIFB1-interacting proteins, VTN and VIM, showed that BPIFB1 reduced VTN expression and the formation of a VTN-integrin αV complex in NPC cells, leading to inhibition of the FAK/Src/ERK signalling pathway. Moreover, BPIFB1 attenuated NPC cell migration and invasion by inhibiting VTN- or VIM-induced epithelial–mesenchymal transition.Conclusions:This study represents the first demonstration of BPIFB1 function in NPC migration, invasion, and lung metastasis. Our findings indicate that re-expression of BPIFB1 might represent a useful strategy for preventing and treating NPC.


Oncotarget | 2018

LncRNAs regulate cancer metastasis via binding to functional proteins

Liting Yang; Yanyan Tang; Fang Xiong; Yi He; Fang Wei; Shanshan Zhang; Can Guo; Bo Xiang; Ming Zhou; Ni Xie; Xiaoling Li; Yong Li; Guiyuan Li; Wei Xiong; Zhaoyang Zeng

Cancer is one of the leading causes of death worldwide, and metastasis is a crucial characteristic of malignancy. Recent studies have shown that lncRNAs play an important role in regulating cancer metastasis through various molecular mechanisms. We briefly summarize four known molecular functions of lncRNAs, including their role as a signal, decoy, guide and scaffold. No matter which pattern lncRNAs follow to carry out their functions, the proteins that lncRNAs bind to are important for them to exhibit their gene-regulating properties. We further illustrate that lncRNAs regulate the localization, stabilization or modification of their binding proteins to realize the binding role of lncRNAs. In this review, we focus on the interactions between lncRNAs and their binding proteins; moreover, we focus on the mechanisms of the collaborative work of lncRNAs and their binding proteins in cancer metastasis, thus evaluating the potential of lncRNAs as prospective novel therapeutic targets in cancer.

Collaboration


Dive into the Fang Xiong's collaboration.

Top Co-Authors

Avatar

Guiyuan Li

Central South University

View shared research outputs
Top Co-Authors

Avatar

Wei Xiong

Central South University

View shared research outputs
Top Co-Authors

Avatar

Xiaoling Li

Central South University

View shared research outputs
Top Co-Authors

Avatar

Zhaoyang Zeng

Central South University

View shared research outputs
Top Co-Authors

Avatar

Ming Zhou

Central South University

View shared research outputs
Top Co-Authors

Avatar

Yong Li

Cleveland Clinic Lerner Research Institute

View shared research outputs
Top Co-Authors

Avatar

Can Guo

Central South University

View shared research outputs
Top Co-Authors

Avatar

Li X

Central South University

View shared research outputs
Top Co-Authors

Avatar

Bo Xiang

Central South University

View shared research outputs
Top Co-Authors

Avatar

Zhaojian Gong

Chinese Ministry of Education

View shared research outputs
Researchain Logo
Decentralizing Knowledge