Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhaoyang Zeng is active.

Publication


Featured researches published by Zhaoyang Zeng.


PLOS ONE | 2012

Circulating miR-17, miR-20a, miR-29c, and miR-223 Combined as Non-Invasive Biomarkers in Nasopharyngeal Carcinoma

Xi Rui Zeng; Juanjuan Xiang; Minghua Wu; Wei Xiong; Hailin Tang; Min Deng; Li X; Qianjin Liao; Bo Su; Zhaohui Luo; Yanhong Zhou; Ming Zhou; Zhaoyang Zeng; Xiaoling Li; Shourong Shen; Cijun Shuai; Guiyuan Li; Jiasheng Fang; Shuping Peng

Background MicroRNAs have been considered as a kind of potential novel biomarker for cancer detection due to their remarkable stability in the blood and the characteristics of their expression profile in many diseases. Methods We performed microarray-based serum miRNA profiling on the serum of twenty nasopharyngeal carcinoma patients at diagnosis along with 20 non-cancerous individuals as controls. This was followed by a real-time quantitative Polymerase Chain Reaction (RT-qPCR) in a separate cohort of thirty patients with nasopharyngeal carcinoma and thirty age- matched non-cancerous volunteers. A model for diagnosis was established by a conversion of mathematical calculation formula which has been validated by analyzing 74 cases of patients with nasopharyngeal carcinoma and 57 cases of non-cancerous volunteers. Results The profiles showed that 39 and 17 miRNAs are exclusively expressed in the serum of non-cancerous volunteers and of patients with nasopharyngeal carcinoma respectively. 4 miRNAs including miR-17, miR-20a, miR-29c, and miR-223 were found to be expressed differentially in the serum of NPC compared with that of non-cancerous control. Based on this, a diagnosis equation with Ct difference method has been established to distinguish NPC cases and non-cancerous controls and validated with high sensitivity and specificity. Conclusions We demonstrate that the serum miRNA-based biomarker model become a novel tool for NPC detection. The circulating 4-miRNA-based method may provide a novel strategy for NPC diagnosis.


International Journal of Cancer | 2008

Lactotransferrin: a candidate tumor suppressor-Deficient expression in human nasopharyngeal carcinoma and inhibition of NPC cell proliferation by modulating the mitogen-activated protein kinase pathway.

Yanhong Zhou; Zhaoyang Zeng; Wenling Zhang; Wei Xiong; Minghua Wu; Yixin Tan; Wei Yi; Lan Xiao; Xiaoling Li; Chen Huang; Li Cao; Ke Tang; Li X; Shourong Shen; Guiyuan Li

Lactotransferrin (LTF) has been shown to regulate tumorogenesis. However, little is known about the role of LTF in regulating the development of human nasopharyngeal carcinoma (NPC). The aim of our study was to investigate whether LTF could regulate the development of NPC by characterizing the pattern of LTF expression in human NPC tissues using cDNA and tissue microarrays. Loss of LTF expression was observed in a significantly higher frequency of NPC tissues compared to that in nontumor nasopharyngeal epithelial tissues. While 61.25% of NPC tissues at the T1/T2 stage were positive for LTF expression, only 40.82% of NPC at the T3/T4 stage were stained by anti‐LTF. Similarly, 41.58% of NPC with local lymph node metastasis displayed LTF expression, a value significantly lower than the 46.36% in primary tumors (p < 0.05). These findings suggest that LTF may negatively regulate the development and metastasis of NPC in vivo. Furthermore, overexpression of or treatment with LTF inhibited the proliferation of NPC cells and promoted cell cycle arrest at the G0/G1 phase in vitro. While LTF treatment downregulated expression of cyclin D1 and phosphorylation of retinoblastoma protein (Rb), expression of p21 and p27 in 5–8F NPC cells was enhanced. Moreover, LTF treatment modulated the mitogen‐activated protein kinase (MAPK) pathway, but did not affect p53 and STAT3 expression in 5–8F NPC cells. Thus LTF is likely to be a candidate tumor suppressor and downregulates the development of NPC by inhibiting NPC proliferation through induction of cell cycle arrest and modulation of the MAPK signaling pathway. Therefore, our findings provide new insights in understanding the mechanism(s) underlying the action of LTF in regulating the development of human NPC.


Journal of Cancer | 2017

Role of tumor microenvironment in tumorigenesis

Maonan Wang; Jingzhou Zhao; Lishen Zhang; Fang Wei; Yu Lian; Yingfeng Wu; Zhaojian Gong; Shanshan Zhang; Jianda Zhou; Ke Cao; Li X; Wei Xiong; Guiyuan Li; Zhaoyang Zeng; Can Guo

Tumorigenesis is a complex and dynamic process, consisting of three stages: initiation, progression, and metastasis. Tumors are encircled by extracellular matrix (ECM) and stromal cells, and the physiological state of the tumor microenvironment (TME) is closely connected to every step of tumorigenesis. Evidence suggests that the vital components of the TME are fibroblasts and myofibroblasts, neuroendocrine cells, adipose cells, immune and inflammatory cells, the blood and lymphatic vascular networks, and ECM. This manuscript, based on the current studies of the TME, offers a more comprehensive overview of the primary functions of each component of the TME in cancer initiation, progression, and invasion. The manuscript also includes primary therapeutic targeting markers for each player, which may be helpful in treating tumors.


Journal of Virology | 2012

Epstein-Barr Virus Downregulates MicroRNA 203 through the Oncoprotein Latent Membrane Protein 1: a Contribution to Increased Tumor Incidence in Epithelial Cells

Haibo Yu; Jianhong Lu; Lielian Zuo; Qijia Yan; Zhengyuan Yu; Li X; Jin Huang; Lian Zhao; Hailin Tang; Zhaohui Luo; Qianjin Liao; Zhaoyang Zeng; Junyi Zhang; Guiyuan Li

ABSTRACT The Epstein-Barr virus (EBV) is highly associated with nasopharyngeal carcinoma (NPC), and it regulates some microRNAs (miRNAs) that are involved in the development of cancer. The role of EBV in the deregulation of cellular miRNAs and how this affects the progression of NPC remain to be investigated. An analysis of the miRNA profile in an EBV-infected cell line revealed that miRNA 203 (miR-203) was downregulated. miR-203 is expressed specifically in epithelial cells. This downregulation of miR-203 was further verified and functionally analyzed. miR-203 was downregulated substantially in epithelial cells and NPC tissues that were latently infected with EBV. Downregulation of miR-203 also occurred during the early stage of EBV infection. Furthermore, the viral oncoprotein, latent membrane protein 1 (LMP1), was responsible for downregulation of miR-203. Removal of the latent EBV genome or suppression of LMP1 resulted in restoration of miR-203 expression. EBV-LMP1 mediated the downregulation of miR-203 at the primary transcript level. E2F3 and CCNG1 were identified as target genes of miR-203. Ectopic expression of miR-203 inhibited EBV-induced S-phase entry and transformation in vivo. Overexpression of the targets overcame the effects of miR-203 mimics on the cell cycle, and the expression of target genes in tumor models was inhibited by miR-203. Inhibitors of Jun N-terminal protein kinase (JNK) and NF-κB blocked miR-203 downregulation. These results imply that EBV promotes malignancy by downregulating cellular miR-203, which contributes to the etiology of NPC.


Genetics in Medicine | 2006

Family-based association analysis validates chromosome 3p21 as a putative nasopharyngeal carcinoma susceptibility locus

Zhaoyang Zeng; Yanhong Zhou; Wenling Zhang; Xiaoling Li; Wei Xiong; Liu H; Songqing Fan; Jun Qian; Lili Wang; Zheng Li; Shourong Shen; Guiyuan Li

Purpose: Nasopharyngeal carcinoma (NPC) poses one of the serious health problems in southern Chinese, with an incidence rate ranging from 15 to 50/100,000. In our previously linkage analysis, a locus on 3p21 was identified to link to NPC. In this study, family-based association analysis was performed to test the transmission disequilibrium of chromosome 3p in 18 high-risk nasopharyngeal carcinoma families of Hunan province in southern China.Methods: Single locus and multi-point of transmission disequilibrium test was performed by Genehunter program package with 15 microsatellite markers on chromosome 3p in 18 nasopharyngeal carcinoma pedigrees.Results: A major transmission disequilibrium peak was observed near D3S1568, which possessed 20 alleles or haplotypes of 6 loci, spanning a 12.4 cM region from D3S1298 to D3S1289 on chromosome 3p21.31-3p21.2, and 3 alleles or haplotypes reached high significantly difference (P < 0.01).Conclusion: These results reflected a link disequilibrium between this chromosome region and a nasopharyngeal carcinoma susceptibility locus, and provided further evidence that a novel nasopharyngeal carcinoma susceptibility gene may be located in this chromosome region. These alleles or haplotypes transmitting disequilibrium in nasopharyngeal carcinoma pedigrees may act as the highly risk molecular markers after verified in large population.


Tumor Biology | 2016

AFAP1-AS1, a long noncoding RNA upregulated in lung cancer and promotes invasion and metastasis

Zhaoyang Zeng; H. Bo; Zhi-Cheng Gong; Yu Lian; XiaYu Y. Li; Wenling Zhang; Hongyu Deng; Mei-juan Zhou; Shuping Peng; Guiyuan Li; Wei Xiong

Long noncoding RNAs (lncRNAs) have emerged as a major regulator of cancer. Significant fraction of lncRNAs is represented on widely used microarray platforms; however, many of which have no known function. To discover novel lung cancer-related lncRNAs, we analyzed the lncRNA expression patterns in five sets of previously published lung cancer gene expression profile data that were represented on Affymetrix HG-U133 Plus 2.0 array, and identified dysregulated lncRNAs in lung cancer. One lncRNA, actin filament associated protein 1 antisense RNA1 (AFAP1-AS1), was the most significantly upregulated in lung cancer and associated with poor prognosis. In vitro experiments demonstrated that AFAP1-AS1 knockdown significantly inhibited the cell invasive and migration capability in lung cancer cells. AFAP1-AS1 knockdown also increased the expression of its antisense protein coding gene, actin filament associated protein 1 (AFAP1), and affected the expression levels of several small GTPase family members and molecules in the actin cytokeratin signaling pathway, which suggested that AFAP1-AS1 promoted cancer cell metastasis via regulation of actin filament integrity. Our findings extend the number of noncoding RNAs functionally implicated in lung cancer progression and highlight the role of AFAP1-AS1 as potential prognostic biomarker and therapeutic target of lung cancer.


Molecular Cancer | 2017

Circular RNAs in human cancer

Yumin Wang; Yongzhen Mo; Zhaojian Gong; Xiang Yang; Mo Yang; Shanshan Zhang; Fang Xiong; Bo Xiang; Ming Zhou; Qianjin Liao; Wenling Zhang; Li X; Xiaoling Li; Yong Li; Guiyuan Li; Zhaoyang Zeng; Wei Xiong

CircRNAs are a novel type of RNAs. With the newly developed technology of next-generation sequencing (NGS), especially RNA-seq technology, over 30,000 circRNAs have already been found. Owing to their unique structure, they are more stable than linear RNAs. CircRNAs play important roles in the carcinogenesis of cancer. The expression of circRNAs is correlated with patients’ clinical characteristics, and circRNAs play a vital role in many aspects of malignant phenotypes, including cell cycle, apoptosis, vascularization, and invasion; metastasis as a RNA sponge, binding to RBP; or translation. Therefore, it is meaningful to further study the mechanism of interactions between circRNAs and tumors. The role of circRNAs as molecular markers or potential targets will provide promising application perspectives, such as early tumor diagnosis, therapeutic evaluation, prognosis prediction, and even gene therapy for tumors.


Journal of Cellular Biochemistry | 2006

Identification of nuclear localization signal that governs nuclear import of BRD7 and its essential roles in inhibiting cell cycle progression

Ming Zhou; Liu H; Xiaojie Xu; Houde Zhou; Xiaoling Li; Cong Peng; Shourong Shen; Wei Xiong; Jian Ma; Zhaoyang Zeng; Songqing Fang; Xinmin Nie; Yixin Yang; Jie Zhou; Juanjuan Xiang; Li Cao; Shuping Peng; Shufang Li; Guiyuan Li

BRD7, a novel bromodomain gene, is identified to be associated with nasopharyngeal carcinoma (NPC). Decreased or loss of expression of BRD7 was detected in NPC biopsies and cell lines. Overexpression of BRD7 could inhibit NPC cell growth and arrest cells in cell cycle by transcriptionally regulating some important molecules involved in ras/MEK/ERK and Rb/E2F pathway, and downregulate the promoter activity of E2F3. In the present study, the subcellular localization of BRD7 was investigated. It was found that BRD7 was mainly localized in nucleus without distinct cell‐specific difference between COS7 and HNE1. Furthermore, a functional nuclear localization signal (NLS) sequence ranging from amino acid 65 to 96 was identified and characterized. The NLS is composed of a cluster of four bipartite nuclear targeting sequences, which are tightly linked and extremely overlapped. We found that whether the entire NLS or the four bipartite nuclear targeting sequences could respectively determine the nuclear import of green fluorescent protein (GFP). The most important is that NLS‐deleted BRD7 shifted the nuclear localization to be mostly in cytoplasm, and failed or reduced to negatively regulate the expression of cell cycle related molecules, cyclin D1 and E2F3, and cell cycle progression from G1 to S phase. In conclusion, NLS is an essential motif affecting BRD7 nuclear distribution, and the nuclear localization of BRD7 is critical for the expression of cell cycle related molecules and cell biological function. J. Cell. Biochem. 98: 920–930, 2006.


PLOS ONE | 2014

LOC401317, a p53-regulated long non-coding RNA, inhibits cell proliferation and induces apoptosis in the nasopharyngeal carcinoma cell line HNE2

Zhaojian Gong; Shanshan Zhang; Zhaoyang Zeng; Han-Jiang Wu; Qian Yang; Fang Xiong; Lei Shi; Jianbo Yang; Wenling Zhang; Yanhong Zhou; Yong Zeng; Li X; Bo Xiang; Shuping Peng; Ming Zhou; Xiaoling Li; Ming Tan; Yong Li; Wei Xiong; Guiyuan Li

Recent studies have revealed that long non-coding RNAs participate in all steps of cancer initiation and progression by regulating protein-coding genes at the epigenetic, transcriptional, and post-transcriptional levels. Long non-coding RNAs are in turn regulated by other genes, forming a complex regulatory network. The regulation networks between the p53 tumor suppressor and these RNAs in nasopharyngeal carcinoma remains unclear. The aims of this study were to investigate the regulatory roles of the TP53 gene in regulating long non-coding RNA expression profiles and to study the function of a TP53-regulated long non-coding RNA (LOC401317) in the nasopharyngeal carcinoma cell line HNE2. Long non-coding RNA expression profiling indicated that 133 long non-coding RNAs were upregulated in the human NPC cell line HNE2 cells following TP53 overexpression, while 1057 were downregulated. Among these aberrantly expressed long non-coding RNAs, LOC401317 was the most significantly upregulated one. Further studies indicated that LOC401317 is directly regulated by p53 and that ectopic expression of LOC401317 inhibits HNE2 cell proliferation in vitro and in vivo by inducing cell cycle arrest and apoptosis. LOC401317 inhibited cell cycle progression by increasing p21 expression and decreasing cyclin D1 and cyclin E1 expression and promoted apoptosis through the induction of poly(ADP-ribose) polymerase and caspase-3 cleavage. Collectively, these results suggest that LOC401317 is directly regulated by p53 and exerts antitumor effects in HNE2 nasopharyngeal carcinoma cells.


Journal of Experimental & Clinical Cancer Research | 2017

circGFRA1 and GFRA1 act as ceRNAs in triple negative breast cancer by regulating miR-34a

Rongfang He; Peng Liu; Xiaoming Xie; Yujuan Zhou; Qianjin Liao; Wei Xiong; Xiaoling Li; Guiyuan Li; Zhaoyang Zeng; Hailin Tang

BackgroudAccumulating evidences indicate that circular RNAs (circRNAs), a class of non-coding RNAs, play important roles in tumorigenesis. However, the function of circRNAs in triple negative breast cancer (TNBC) is largely unknown.MethodsWe performed circRNA microarrays to identify circRNAs that are aberrantly expressed in TNBC cell lines. Expression levels of a significantly upregulated circRNA, circGFRA1, was detected by quantitative real-time PCR (qRT-PCR) in TNBC cell lines and tissues. Kaplan-Meier survival analysis was used to explore the significance of circGFRA1 in clinical prognosis. Then, we examined the functions of circGFRA1 in TNBC by cell proliferation, apoptosis and mouse xenograft assay. In addition, luciferase assay was used to explore the miRNA sponge function of circGFRA1 in TNBC.ResultsMicroarray analysis and qRT-PCR verified a circRNA termed circGFRA1 that was upregulated in TNBC. Kaplan-Meier survival analysis showed that upregulated circGFRA1 was correlated with poorer survival. Knockdown of circGFRA1 inhibited proliferation and promoted apoptosis in TNBC. Via luciferase reporter assays, circGFRA1 and GFRA1 was observed to directly bind to miR-34a. Subsequent experiments showed that circGFRA1 and GFRA1 regulated the expression of each other by sponging miR-34a.ConclusionsTaken together, we conclude that circGFRA1 may function as a competing endogenous RNA (ceRNA) to regulate GFRA1 expression through sponging miR-34a to exert regulatory functions in TNBC. circGFRA1 may be a diagnostic biomarker and potential target for TNBC therapy.

Collaboration


Dive into the Zhaoyang Zeng's collaboration.

Top Co-Authors

Avatar

Guiyuan Li

Central South University

View shared research outputs
Top Co-Authors

Avatar

Wei Xiong

Central South University

View shared research outputs
Top Co-Authors

Avatar

Xiaoling Li

Central South University

View shared research outputs
Top Co-Authors

Avatar

Li X

Central South University

View shared research outputs
Top Co-Authors

Avatar

Ming Zhou

Central South University

View shared research outputs
Top Co-Authors

Avatar

Bo Xiang

Central South University

View shared research outputs
Top Co-Authors

Avatar

Wenling Zhang

Central South University

View shared research outputs
Top Co-Authors

Avatar

Yong Li

University of Louisville

View shared research outputs
Top Co-Authors

Avatar

Qianjin Liao

Central South University

View shared research outputs
Top Co-Authors

Avatar

Zhaojian Gong

Central South University

View shared research outputs
Researchain Logo
Decentralizing Knowledge