Fangsen Xu
Huazhong Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fangsen Xu.
Theoretical and Applied Genetics | 2010
Mei Yang; Guangda Ding; Lei Shi; Ji Feng; Fangsen Xu; J. Meng
Phosphorus (P) deficiency in soils is a major limiting factor for crop growth worldwide. Changes in root morphology and architecture represent as an important mechanism of adaptation of plants to low P (LP) stress. To elucidate the genetic control of tolerance to P deficiency in Brassica napus, quantitative trait loci (QTL) for root morphology in response to LP were identified in three independent paper culture experiments, and dissected through QTL meta-analysis. In total, 62 significant QTL for total root length, root surface area, root volume, total dry weight, and plant P uptake under high and low P conditions were detected in the three experiments. Forty-five of these QTL were clustered within four linkage groups and were integrated into eight unique QTL by two rounds of QTL meta-analysis. Three of the unique QTL, uq.A1, uq.C3a and uq.C3b, were specific for LP condition. uq.C3a and uq.C3b were identified specifically for root traits and P uptake under LP stress, and may contribute to the adaptability of B. napus to P deficiency. Two functional markers, BnIPS2-C3 and BnGPT1-C3, which were developed from the genes AtIPS2 and AtGPT1 in Arabidopsis, were located in the confidence intervals of uq.C3a and uq.C3b, respectively. And AtGPT1 that corresponded to the interval of uq.C3b by in silico mapping was a possible candidate gene of uq.C3b. These results confirmed the importance of root traits for the adaptability of B. napus to LP and partially revealed the genetic basis of tolerance to P deficiency. These findings should be valuable for further study of the mechanism of P efficiency and the breeding of P-efficient cultivars by marker-assisted selection.
Annals of Botany | 2013
Lei Shi; Taoxiong Shi; Martin R. Broadley; Philip J. White; Yan Long; Jinling Meng; Fangsen Xu; John P. Hammond
Background and Aims Phosphate (Pi) deficiency in soils is a major limiting factor for crop growth worldwide. Plant growth under low Pi conditions correlates with root architectural traits and it may therefore be possible to select these traits for crop improvement. The aim of this study was to characterize root architectural traits, and to test quantitative trait loci (QTL) associated with these traits, under low Pi (LP) and high Pi (HP) availability in Brassica napus. Methods Root architectural traits were characterized in seedlings of a double haploid (DH) mapping population (n = 190) of B. napus [‘Tapidor’ × ‘Ningyou 7’ (TNDH)] using high-throughput phenotyping methods. Primary root length (PRL), lateral root length (LRL), lateral root number (LRN), lateral root density (LRD) and biomass traits were measured 12 d post-germination in agar at LP and HP. Key Results In general, root and biomass traits were highly correlated under LP and HP conditions. ‘Ningyou 7’ had greater LRL, LRN and LRD than ‘Tapidor’, at both LP and HP availability, but smaller PRL. A cluster of highly significant QTL for LRN, LRD and biomass traits at LP availability were identified on chromosome A03; QTL for PRL were identified on chromosomes A07 and C06. Conclusions High-throughput phenotyping of Brassica can be used to identify root architectural traits which correlate with shoot biomass. It is feasible that these traits could be used in crop improvement strategies. The identification of QTL linked to root traits under LP and HP conditions provides further insights on the genetic basis of plant tolerance to P deficiency, and these QTL warrant further dissection.
PLOS ONE | 2014
Aili Bao; Zhuqing Zhao; Guangda Ding; Lei Shi; Fangsen Xu; Hongmei Cai
Maintaining an appropriate balance of carbon to nitrogen metabolism is essential for rice growth and yield. Glutamine synthetase is a key enzyme for ammonium assimilation. In this study, we systematically analyzed the growth phenotype, carbon-nitrogen metabolic status and gene expression profiles in GS1;1-, GS1;2-overexpressing rice and wildtype plants. Our results revealed that the GS1;1-, GS1;2-overexpressing plants exhibited a poor plant growth phenotype and yield and decreased carbon/nitrogen ratio in the stem caused by the accumulation of nitrogen in the stem. In addition, the leaf SPAD value and photosynthetic parameters, soluble proteins and carbohydrates varied greatly in the GS1;1-, GS1;2-overexpressing plants. Furthermore, metabolite profile and gene expression analysis demonstrated significant changes in individual sugars, organic acids and free amino acids, and gene expression patterns in GS1;1-, GS1;2-overexpressing plants, which also indicated the distinct roles that these two GS1 genes played in rice nitrogen metabolism, particularly when sufficient nitrogen was applied in the environment. Thus, the unbalanced carbon-nitrogen metabolic status and poor ability of nitrogen transportation from stem to leaf in GS1;1-, GS1;2-overexpressing plants may explain the poor growth and yield.
Plant Molecular Biology | 2010
Zhifang Wang; Zhenhua Wang; Lei Shi; Lijun Wang; Fangsen Xu
Boron (B) deficiency is a worldwide problem, and Brassica napus is one of the most sensitive crops to B deficiency. To better understand the B starvation response of Brassica napus, we conducted a comparative proteomic analysis of seedling stage Brassica napus root between B-sufficient and B-limited conditions: 45 differentially expressed proteins were successfully identified by 2-DE coupled with MALDI-TOF/TOF-MS and LTQ-ESI-MS/MS analysis. Among these proteins, 10 were down-regulated and 35 were up-regulated under B-limited condition. Combining GO and KEGG analyses with data from previous reports, proteins were categorized into several functional groups, including antioxidant and detoxification, defense-related proteins, signaling and regulation, carbohydrate and energy metabolism, amino acid and fatty acid metabolism, protein translation and degradation, cell wall structure, and transporter. The genes of selected proteins were analyzed by quantitative RT-PCR. Our results provide novel information for better understanding the physiological and biochemical responses to B deficiency in plants.
Journal of Plant Nutrition | 2010
Yifan Hu; Xiangsheng Ye; Lei Shi; Haiyan Duan; Fangsen Xu
Application of phosphorus (P) fertilizer is important in crop production because of the low bioavailability of phosphorus to plants in both acidic and calcareous soils. Although rapeseed (Brassica napus) is generally sensitive to P deficiency, different cultivars differ widely in this respect. Differences in P uptake and utilization between two rapeseed cultivars, one P-efficient (‘97081’) and one P-inefficient (‘97009’), were evaluated in solution culture by studying the changes in root morphology and parameters of P uptake kinetics in response to low-P stress. The P-efficient cultivar had lower Km and Cmin values and higher Vmax and developed longer and denser lateral root hair with greater number of root tips and branches under low-P stress, which resulted in a better developed root system and more efficient uptake of P. That, in turn, led to higher concentration and accumulation of P in the plants, culminating in higher biomass production. However, P utilization efficiency (biomass production per unit P accumulated in plant) of the P-efficient ‘97081’ was lower than that of ‘97009’ when P was deficient. These results suggest that P efficiency in rapeseed is due to a better developed root system as well as efficient uptake of P.
PLOS ONE | 2014
Didi Zhang; Yingpeng Hua; Xiaohua Wang; Hua Zhao; Lei Shi; Fangsen Xu
Low boron (B) seriously limits the growth of oilseed rape (Brassica napus L.), a high B demand species that is sensitive to low B conditions. Significant genotypic variations in response to B deficiency have been observed among B. napus cultivars. To reveal the genetic basis for B efficiency in B. napus, quantitative trait loci (QTLs) for the plant growth traits, B uptake traits and the B efficiency coefficient (BEC) were analyzed using a doubled haploid (DH) population derived from a cross between a B-efficient parent, Qingyou 10, and a B-inefficient parent, Westar 10. A high-density genetic map was constructed based on single nucleotide polymorphisms (SNPs) assayed using Brassica 60 K Infinium BeadChip Array, simple sequence repeats (SSRs) and amplified fragment length polymorphisms (AFLPs). The linkage map covered a total length of 2139.5 cM, with 19 linkage groups (LGs) and an average distance of 1.6 cM between adjacent markers. Based on hydroponic evaluation of six B efficiency traits measured in three separate repeated trials, a total of 52 QTLs were identified, accounting for 6.14–46.27% of the phenotypic variation. A major QTL for BEC, qBEC-A3a, was co-located on A3 with other QTLs for plant growth and B uptake traits under low B stress. Using a subset of substitution lines, qBEC-A3a was validated and narrowed down to the interval between CNU384 and BnGMS436. The results of this study provide a novel major locus located on A3 for B efficiency in B. napus that will be suitable for fine mapping and marker-assisted selection breeding for B efficiency in B. napus.
Journal of Plant Nutrition | 2009
Haiyan Duan; Lei Shi; Xiangsheng Ye; Yunhua Wang; Fangsen Xu
ABSTRACT Plant species and genotypes within one species may significantly differ in phosphorus (P) uptake and utilization when they suffer from P starvation. The objective of this research was to screen P-efficient germplasm of oilseed rape (Brassica napus L.) and analyze the possible mechanism responsible for P efficiency by two-steps screening experiments and validation of P efficiency. Phosphorus efficiency coefficient at seedling stage, namely, ratio of shoot dry weight under low P to that under adequate P (PECS) of 194 oilseed rape cultivars varied from 0.050 to 0.62 and was significantly related with shoot dry weight under low P level (r = 0.859**, P < 0.01). Oilseed rape cultivar ‘Eyou Changjia’ presented the highest P efficiency coefficient in each growth stage and had the highest seed yield at low P, whereas oilseed rape cultivar ‘B104-2’ was the most sensitive to low P stress among the 12 candidate cultivars obtained from the two-steps screening experiments. Under low P condition in validation experiments of soil and solution cultures, ‘Eyou Changjia’ could produce much more dry matter and acquire more P than ‘B104-2.’ Moreover, P efficient coefficient obtained from the pot experiment was comparable to those from the field experiment. This might be attributed to high P uptake efficiency for ‘Eyou Changjia’ when it suffered from low-P stress. Comparison of results from the hydroponics with those from the pot and field experiments led to the conclusion that the P uptake efficiency in the hydroponics is highly related to that in soil culture conditions. These results show that there are large genotypic differences in response to phosphorus deficiency in oilseed rape germplasm (Brassica napus L.) and ‘Eyou Changjia’ is P-efficient and ‘B104-2’ is P-inefficient. By comparing these results further, the mechanism responsible for P efficiency was suggested to be mainly due to high P uptake efficiency by forming larger root system, and improving the ability of mobilizing and acquiring soil P in P-efficient oilseed rape under the condition of P starvation.
Plant and Soil | 2009
Jia Liu; Jinpeng Yang; Ruiyuan Li; Lei Shi; Chunyu Zhang; Yan Long; Fangsen Xu; Jinling Meng
Mineral nutrients are essential for plant cell function, and understanding the genetic and physiological basis of mineral concentration is therefore important for the development of nutrient-efficient crop varieties that can cope with a shortage of mineral resources. In the present study, we investigated the profiles of B, Ca, Fe, Cu, Mg, P and Zn concentrations in shoots and analyzed the genetic variation in a rapeseed (Brassica napus) double haploid population at normal and deficient boron (B) levels in hydroponic conditions. Significant correlations between the concentrations of different minerals, such as Ca and Mg, Ca and P, and Cu and Fe, existed in both B environments. A total of 35 quantitative trait loci (QTL) and 74 epistatic interaction pairs for mineral concentrations were identified by whole genome analysis of QTL and epistatic interactions. The individual phenotypic contributions of the QTL ranged from 4.4% to 19.0%, and the total percentage of genetic variance that was due to QTL and epistatic interactions varied from 10.4% to 82.4%. Most of these QTL corresponded specifically to one of the two B conditions except for one stable main-effect P-QTL across the B environments. Three QTL for Ca and Mg were found to co-localize under normal B condition. These results revealed that genetic factors control mineral homeostasis in plants and multigenes involving ion transport are required to regulate mineral balance in plants under conditions of diverse nutrient stress. In addition, 26 genes involved in ion uptake and transport in Arabidopsis thaliana were in silico mapped onto the QTL intervals of B. napus by comparative genomic analysis. These candidate orthologous genes in B. napus allowed the selection of genes involved in the controlling mineral concentration that may account for the identified QTL.
PLOS ONE | 2013
Yi Wang; Xiangsheng Ye; Guangda Ding; Fangsen Xu
Phytate is the major storage form of organic phosphorus in soils and plant seeds, and phosphorus (P) in this form is unavailable to plants or monogastric animals. In the present study, the phytase genes phyA and appA were introduced into Brassica napus cv Westar with a signal peptide sequence and CaMV 35S promoter, respectively. Three independent transgenic lines, P3 and P11 from phyA and a18 from appA, were selected. The three transgenic lines exhibited significantly higher exuded phytase activity when compared to wild-type (WT) controls. A quartz sand culture experiment demonstrated that transgenic Brassica napus had significantly improved P uptake and plant biomass. A soil culture experiment revealed that seed yields of transgenic lines P11 and a18 increased by 20.9% and 59.9%, respectively, when compared to WT. When phytate was used as the sole P source, P accumulation in seeds increased by 20.6% and 46.9% with respect to WT in P11 and a18, respectively. The P3 line accumulated markedly more P in seeds than WT, while no significant difference was observed in seed yields when phytate was used as the sole P source. Phytase activities in transgenic canola seeds ranged from 1,138 to 1,605 U kg–1 seeds, while no phytase activity was detected in WT seeds. Moreover, phytic acid content in P11 and a18 seeds was significantly lower than in WT. These results introduce an opportunity for improvement of soil and seed phytate-P bioavailability through genetic manipulation of oilseed rape, thereby increasing plant production and P nutrition for monogastric animals.
PLOS ONE | 2013
Taoxiong Shi; Ruiyuan Li; Zunkang Zhao; Guangda Ding; Yan Long; Jinling Meng; Fangsen Xu; Lei Shi
Background Oilseed rape (Brassica napus L.) is one of the most important oil crops. A primary limitation to the cultivation of this crop is the lack of available phosphorus (P) in soils. To elucidate the genetic control of P deficiency tolerance in Brassica napus, quantitative trait locus (QTL) for seed yield and yield related-traits in response to P deficiency were identified using a double haploid mapping population (TN DH) derived from a cross between a P-efficient cultivar, Ningyou 7 and a P-inefficient cultivar, Tapidor. Results Three field trials were conducted to determine seed yield (SY), plant height (PH), number of primary branches (BN), height to the first primary branch (FBH), relative first primary branch height (RBH), pod number per plant (PN), seed number per pod (SN) and seed weight of 1,000 seeds (SW) in 188 lines of TN DH population exposed to low P (LP) and optimal P (OP) conditions. P deficiency decreased PH, BN, SN, PN and SY, and increased FBH and RBH with no effect on SW. Three reproducible LP-specific QTL regions were identified on chromosomes A2, A3 and A5 that controlled SN, PN and SW respectively. In addition, six reproducible constitutive regions were also mapped with two each for SY-LP on A2, and FBH-LP on C6 and one each for PH-LP and SW-LP on A3. About 30 markers derived from 19 orthologous genes involved in Arabidopsis P homeostasis were mapped on 24 QTL regions by comparative mapping between Arabidopsis and Brassica napus. Among these genes, GPT1, MGD2 and SIZ1 were associated with two major loci regulating SY-LP and other yield-related traits on A2 between 77.1 and 95.0 cM. Conclusion The stable QTLs detected under LP conditions and their candidate genes may provide useful information for marker-assisted selection in breeding high-yield B. napus varieties with improved P efficiency.