Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jinling Meng is active.

Publication


Featured researches published by Jinling Meng.


Science | 2014

Early allopolyploid evolution in the post-neolithic Brassica napus oilseed genome

Boulos Chalhoub; Shengyi Liu; Isobel A. P. Parkin; Haibao Tang; Xiyin Wang; Julien Chiquet; Harry Belcram; Chaobo Tong; Birgit Samans; Margot Corréa; Corinne Da Silva; Jérémy Just; Cyril Falentin; Chu Shin Koh; Isabelle Le Clainche; Maria Bernard; Pascal Bento; Benjamin Noel; Karine Labadie; Adriana Alberti; Mathieu Charles; Dominique Arnaud; Hui Guo; Christian Daviaud; Salman Alamery; Kamel Jabbari; Meixia Zhao; Patrick P. Edger; Houda Chelaifa; David Tack

The genomic origins of rape oilseed Many domesticated plants arose through the meeting of multiple genomes through hybridization and genome doubling, known as polyploidy. Chalhoub et al. sequenced the polyploid genome of Brassica napus, which originated from a recent combination of two distinct genomes approximately 7500 years ago and gave rise to the crops of rape oilseed (canola), kale, and rutabaga. B. napus has undergone multiple events affecting differently sized genetic regions where a gene from one progenitor species has been converted to the copy from a second progenitor species. Some of these gene conversion events appear to have been selected by humans as part of the process of domestication and crop improvement. Science, this issue p. 950 The polyploid genome of oilseed rape exhibits evolution through homologous gene conversion. Oilseed rape (Brassica napus L.) was formed ~7500 years ago by hybridization between B. rapa and B. oleracea, followed by chromosome doubling, a process known as allopolyploidy. Together with more ancient polyploidizations, this conferred an aggregate 72× genome multiplication since the origin of angiosperms and high gene content. We examined the B. napus genome and the consequences of its recent duplication. The constituent An and Cn subgenomes are engaged in subtle structural, functional, and epigenetic cross-talk, with abundant homeologous exchanges. Incipient gene loss and expression divergence have begun. Selection in B. napus oilseed types has accelerated the loss of glucosinolate genes, while preserving expansion of oil biosynthesis genes. These processes provide insights into allopolyploid evolution and its relationship with crop domestication and improvement.


Genetics | 2009

Unraveling the Complex Trait of Crop Yield With Quantitative Trait Loci Mapping in Brassica napus

Jiaqin Shi; Ruiyuan Li; Dan Qiu; Congcong Jiang; Yan Long; Colin Morgan; Ian Bancroft; Jianyi Zhao; Jinling Meng

Yield is the most important and complex trait for the genetic improvement of crops. Although much research into the genetic basis of yield and yield-associated traits has been reported, in each such experiment the genetic architecture and determinants of yield have remained ambiguous. One of the most intractable problems is the interaction between genes and the environment. We identified 85 quantitative trait loci (QTL) for seed yield along with 785 QTL for eight yield-associated traits, from 10 natural environments and two related populations of rapeseed. A trait-by-trait meta-analysis revealed 401 consensus QTL, of which 82.5% were clustered and integrated into 111 pleiotropic unique QTL by meta-analysis, 47 of which were relevant for seed yield. The complexity of the genetic architecture of yield was demonstrated, illustrating the pleiotropy, synthesis, variability, and plasticity of yield QTL. The idea of estimating indicator QTL for yield QTL and identifying potential candidate genes for yield provides an advance in methodology for complex traits.


Genetics | 2008

Flowering Time Quantitative Trait Loci Analysis of Oilseed Brassica in Multiple Environments and Genomewide Alignment with Arabidopsis

Yan Long; J. Shi; D. Qiu; Ruiyuan Li; Chunyu Zhang; Jenny W. Wang; J. Hou; J. Zhao; L. Shi; Beom-Seok Park; Su-Ryun Choi; Yong-Pyo Lim; Jinling Meng

Most agronomical traits exhibit quantitative variation, which is controlled by multiple genes and are environmentally dependent. To study the genetic variation of flowering time in Brassica napus, a DH population and its derived reconstructed F2 population were planted in 11 field environments. The flowering time varied greatly with environments; 60% of the phenotypic variation was attributed to genetic effects. Five to 18 QTL at a statistically significant level (SL-QTL) were detected in each environment and, on average, two new SL-QTL were discovered with each added environment. Another type of QTL, micro-real QTL (MR-QTL), was detected repeatedly from at least 2 of the 11 environments; resulting in a total of 36 SL-QTL and 6 MR-QTL. Sixty-three interacting pairs of loci were found; 50% of them were involved in QTL. Hundreds of floral transition genes in Arabidopsis were aligned with the linkage map of B. napus by in silico mapping; 28% of them aligned with QTL regions and 9% were consistent with interacting loci. One locus, BnFLC10, in N10 and a QTL cluster in N16 were specific to spring- and winter-cropped environments respectively. The number of QTL, interacting loci, and aligned functional genes revealed a complex genetic network controlling flowering time in B. napus.


Nature Biotechnology | 2011

Dissecting the genome of the polyploid crop oilseed rape by transcriptome sequencing

Ian Bancroft; Colin Morgan; Fiona Fraser; Janet Higgins; Rachel Wells; Leah Clissold; David Baker; Yan Long; Jinling Meng; Xiaowu Wang; Shengyi Liu; Martin Trick

Polyploidy complicates genomics-based breeding of many crops, including wheat, potato, cotton, oat and sugarcane. To address this challenge, we sequenced leaf transcriptomes across a mapping population of the polyploid crop oilseed rape (Brassica napus) and representative ancestors of the parents of the population. Analysis of sequence variation and transcript abundance enabled us to construct twin single nucleotide polymorphism linkage maps of B. napus, comprising 23,037 markers. We used these to align the B. napus genome with that of a related species, Arabidopsis thaliana, and to genome sequence assemblies of its progenitor species, Brassica rapa and Brassica oleracea. We also developed methods to detect genome rearrangements and track inheritance of genomic segments, including the outcome of an interspecific cross. By revealing the genetic consequences of breeding, cost-effective, high-resolution dissection of crop genomes by transcriptome sequencing will increase the efficiency of predictive breeding even in the absence of a complete genome sequence.


New Phytologist | 2008

A functional genomics resource for Brassica napus: development of an EMS mutagenized population and discovery of FAE1 point mutations by TILLING

Nian Wang; Yajie Wang; Fang Tian; Graham J. King; Chunyu Zhang; Yan Long; Lei Shi; Jinling Meng

Two ethylmethanesulfonate (EMS) mutant populations of the semi-winter rapeseed cv. Ningyou7 were constructed with high mutant load, to provide a TILLING platform for functional genomics in Brassica napus, and for introduction of novel allelic variation in rapeseed breeding. Forward genetic screening of mutants from the M2 populations resulted in identification of a large number of novel phenotypes. Reverse genetic screening focused on the potentially multi-paralogous gene FAE1 (fatty acid elongase1), which controls seed erucic acid synthesis in rapeseed. A B. napus BAC library was screened, and loci in a reference mapping population (TNDH) were mapped to conclude that there are two paralogous copies of FAE1, one on each of the B. napus A and C genomes. A new procedure is demonstrated to identify novel mutations in situations where two or more very similar paralogous gene copies exist in a genome. The procedure involves TILLING of single plants, using existing SNPs as a positive control, and is able to distinguish novel mutations based on primer pairs designed to amplify both FAE1 paralogues simultaneously. The procedure was applied to 1344 M2 plants, with 19 mutations identified, of which three were functionally compromised with reduced seed erucic acid content.


Theoretical and Applied Genetics | 2006

Quantitative trait loci for resistance to Sclerotinia sclerotiorum and its association with a homeologous non-reciprocal transposition in Brassica napus L.

Jianwei Zhao; Joshua A. Udall; Pablo A. Quijada; C. R. Grau; Jinling Meng; Thomas C. Osborn

Sclerotinia stem rot, caused by fungus Sclerotinia sclerotiorum, is one of the most devastating diseases in rapeseed (Brassica napus L.). We report the identification of Quantitative trait loci (QTL) involved in the resistance to S. sclerotiorum in two segregating populations of DH lines: the HUA population, derived from a cross between a partially resistant Chinese winter line (Hua dbl2) and a susceptible European spring line (P1804); and the MS population, derived from a partially resistant French winter cultivar (Major) and a susceptible Canadian spring cultivar (Stellar). A petiole inoculation technique and two scoring methods, days to wilt (DW) and stem lesion length (SLL), were used for the resistance assessment. A total of eight genomic regions affecting resistance were detected in the HUA population, with four of these regions affecting both measures of resistance. Only one region, which affected both measurements, was detected in the MS population. Individual QTL explained 6–22% of the variance. At five of the QTL from both populations, alleles from the resistant parent contributed to the resistance. QTL on N2 from the HUA population had the highest LOD score and R2 value and was detected for SLL in the first evaluation. The N12 resistance allele in Hua dbl2 was detected in a region containing a homeologous non-reciprocal transposition (HNRT) from the resistance-containing portion of N2. This result suggests that QTL in the N12.N2 HNRT enhanced the resistance of Hua dbl2 by increasing the dosage of resistance genes. The relationship of QTL from different genetic backgrounds and their associations with other agronomic traits are discussed.


Plant Disease | 2004

Evaluation of Sclerotinia Stem Rot Resistance in Oilseed Brassica napus Using a Petiole Inoculation Technique Under Greenhouse Conditions

Jianwei Zhao; A. J. Peltier; Jinling Meng; Thomas C. Osborn; C. R. Grau

A petiole inoculation technique was adapted for evaluating resistance of oilseed Brassica napus seedlings to Sclerotinia sclerotiorum. In the first of four experiments, four isolates of S. sclerotiorum were tested, two originating from soybean and two from B. napus. In all, 10 to 47 B. napus accessions were inoculated in the seedling stage and responses to isolates were evaluated using days to wilt (DW) and a lesion phenotype index (LP). There were no significant differences in virulence among the four isolates for DW and only slight differences for LP. However, significant differences (P < 0.0001) were observed among the B. napus accessions for DW and LP in this experiment and in subsequent experiments using one isolate. The responses of accessions were consistent among experiments and among evaluation criteria. Higher levels of resistance were found among winter-type than spring-type accessions, and among rapeseed-quality compared with canola-quality accessions. The most resistant accessions identified also were the most resistant when inoculated at the flowering stage. Terminal stems were inoculated immediately below the lowest flower and stem lesion length (SLL) was used to characterize the interaction phenotype of each accession. The petiole inoculation technique can be used successfully to differentiate oilseed B. napus germ plasm for response to S. sclerotiorum. This inoculation technique and the sources of resistance identified in this study may be used to determine inheritance resistance to S. sclerotiorum and for improving oilseed B. napus cultivars for resistance to this important pathogen.


Planta | 2007

Analysis of gene expression profiles in response to Sclerotinia sclerotiorum in Brassica napus

Jianwei Zhao; Jianlin Wang; Lingling An; R. W. Doerge; Z. Jeffrey Chen; C. R. Grau; Jinling Meng; Thomas C. Osborn

Sclerotinia sclerotiorum is a necrotrophic plant pathogen which causes serious disease in agronomically important crop species. The molecular basis of plant defense to this pathogen is poorly understood. We investigated gene expression changes associated with S. sclerotiorum infection in a partially resistant and a susceptible genotype of oilseed Brassica napus using a whole genome microarray from Arabidopsis. A total of 686 and 1,547 genes were found to be differentially expressed after infection in the resistant and susceptible genotypes, respectively. The number of differentially expressed genes increased over infection time with the majority being up-regulated in both genotypes. The putative functions of the differentially expressed genes included pathogenesis-related (PR) proteins, proteins involved in the oxidative burst, protein kinase, molecule transporters, cell maintenance and development, abiotic stress, as well as proteins with unknown functions. The gene regulation patterns indicated that a large part of the defense response exhibited as a temporal and quantitative difference between the two genotypes. Genes associated with jasmonic acid (JA) and ethylene signal transduction pathways were induced, but no salicylic acid (SA) responsive genes were identified. Candidate defense genes were identified by integration of the early response genes in the partially resistant line with previously mapped quantitative trait loci (QTL). Expression levels of these genes were verified by Northern blot analyses. These results indicate that genes encoding various proteins involved in diverse roles, particularly WRKY transcription factors and plant cell wall related proteins may play an important role in the defense response to S. sclerotiorum disease.


New Phytologist | 2012

Characterization of metabolite quantitative trait loci and metabolic networks that control glucosinolate concentration in the seeds and leaves of Brassica napus

Ji Feng; Yan Long; Lei Shi; Jiaqin Shi; Guy C. Barker; Jinling Meng

• Glucosinolates are a major class of secondary metabolites found in the Brassicaceae, whose degradation products are proving to be increasingly important for human health and in crop protection. • The genetic and metabolic basis of glucosinolate accumulation was dissected through analysis of total glucosinolate concentration and its individual components in both leaves and seeds of a doubled-haploid (DH) mapping population of oilseed rape/canola (Brassica napus). • The quantitative trait loci (QTL) that had an effect on glucosinolate concentration in either or both of the organs were integrated, resulting in 105 metabolite QTL (mQTL). Pairwise correlations between individual glucosinolates and prior knowledge of the metabolic pathways involved in the biosynthesis of different glucosinolates allowed us to predict the function of genes underlying the mQTL. Moreover, this information allowed us to construct an advanced metabolic network and associated epistatic interactions responsible for the glucosinolate composition in both leaves and seeds of B. napus. • A number of previously unknown potential regulatory relationships involved in glucosinolate synthesis were identified and this study illustrates how genetic variation can affect a biochemical pathway.


BMC Evolutionary Biology | 2009

The evolution of Brassica napus FLOWERING LOCUST paralogues in the context of inverted chromosomal duplication blocks

Jing Wang; Yan Long; Baoduo Wu; Jia Liu; Congcong Jiang; Lei Shi; Jianwei Zhao; Graham J. King; Jinling Meng

BackgroundThe gene FLOWERING LOCUS T (FT) and its orthologues play a central role in the integration of flowering signals within Arabidopsis and other diverse species. Multiple copies of FT, with different cis-intronic sequence, exist and appear to operate harmoniously within polyploid crop species such as Brassica napus (AACC), a member of the same plant family as Arabidopsis.ResultsWe have identified six BnFT paralogues from the genome of B. napus and mapped them to six distinct regions, each of which is homologous to a common ancestral block (E) of Arabidopsis chromosome 1. Four of the six regions were present within inverted duplicated regions of chromosomes A7 and C6. The coding sequences of BnFT paralogues showed 92-99% identities to each other and 85-87% identity with that of Arabidopsis. However, two of the paralogues on chromosomes A2 and C2, BnA2.FT and BnC2.FT, were found to lack the distinctive CArG box that is located within intron 1 that has been shown in Arabidopsis to be the binding site for theFLC protein. Three BnFT paralogues (BnA2.FT, BnC6.FT.a and BnC6.FT.b) were associated with two major QTL clusters for flowering time. One of the QTLs encompassing two BnFT paralogues (BnC6.FT.a and BnC6.FT.b) on chromosome C6 was resolved further using near isogenic lines, specific alleles of which were both shown to promote flowering. Association analysis of the three BnFT paralogues across 55 cultivars of B. napus showed that the alleles detected in the original parents of the mapping population used to detect QTL (NY7 and Tapidor) were ubiquitous amongst spring and winter type cultivars of rapeseed. It was inferred that the ancestral FT homologues in Brassica evolved from two distinct copies, one of which was duplicated along with inversion of the associated chromosomal segment prior to the divergence of B. rapa (AA) and B. oleracea (CC). At least ten such inverted duplicated blocks (IDBs) were identified covering a quarter of the whole B. napus genome.ConclusionSix orthologues of Arabidopsis FT were identified and mapped in the genome of B. napus which sheds new light on the evolution of paralogues in polyploidy species. The allelic variation of BnFT paralogues results in functional differences affecting flowering time between winter and spring type cultivars of oilseed Brassica. The prevalent inverted duplicated blocks, two of which were located by four of the six BnFT paralogues, contributed to gene duplications and might represent predominant pathway of evolution in Brassica.

Collaboration


Dive into the Jinling Meng's collaboration.

Top Co-Authors

Avatar

Yan Long

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jun Zou

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Lei Shi

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Chunyu Zhang

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Fangsen Xu

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Ruiyuan Li

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Graham J. King

Southern Cross University

View shared research outputs
Top Co-Authors

Avatar

Harsh Raman

Charles Sturt University

View shared research outputs
Top Co-Authors

Avatar

Jacqueline Batley

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge