Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fangwen Rao is active.

Publication


Featured researches published by Fangwen Rao.


Circulation | 2007

Catecholamine release-inhibitory peptide catestatin (chromogranin A352-372): Naturally occurring amino acid variant Gly364Ser causes profound changes in human autonomic activity and alters risk for hypertension

Fangwen Rao; Gen Wen; Jiaur R. Gayen; Madhusudan Das; Sucheta M. Vaingankar; Brinda K. Rana; Manjula Mahata; Brian Kennedy; Rany M. Salem; Mats Stridsberg; Kenneth Abel; Douglas W. Smith; Eleazar Eskin; Nicholas J. Schork; Bruce A. Hamilton; Michael G. Ziegler; Sushil K. Mahata; Daniel T. O'Connor

Background— Chromogranin A, coreleased with catecholamines by exocytosis, is cleaved to the catecholamine release–inhibitory fragment catestatin. We identified a natural nonsynonymous variant of catestatin, Gly364Ser, that alters human autonomic function and blood pressure. Methods and Results— Gly364Ser heterozygotes and controls underwent physiological and biochemical phenotyping, including catecholamine production, chromogranin A precursor, and its catestatin product. Case-control studies replicated effects of the gene on blood pressure in the population. Gly364Ser displayed diminished inhibition of catecholamine secretion from cultured neurons. Gly/Ser heterozygotes displayed increased baroreceptor slope during upward deflections (by ≈47%) and downward deflections (by ≈44%), increased cardiac parasympathetic index (by ≈2.4-fold), and decreased cardiac sympathetic index (by ≈26%). Renal norepinephrine excretion was diminished by ≈26% and epinephrine excretion by ≈34% in Gly/Ser heterozygotes. The coalescent dated emergence of the variant to ≈70 000 years ago. Gly364Ser was in linkage disequilibrium with 1 major Chromogranin A promoter haplotype, although promoter haplotypes did not predict autonomic phenotypes. The 364Ser variant was associated with lower diastolic blood pressure in 2 independent/confirmatory groups of patients with hypertension; genotype groups differed by ≈5 to 6 mm Hg, and the polymorphism accounted for ≈1.8% of population diastolic blood pressure variance, although a significant gene-by-sex interaction existed, with an enhanced effect in men. Conclusions— The catestatin Gly364Ser variant causes profound changes in human autonomic activity, both parasympathetic and sympathetic, and seems to reduce risk of developing hypertension, especially in men. A model for catestatin action in the baroreceptor center of the nucleus of the tractus solitarius accounts for these actions.


Journal of Hypertension | 2007

C-reactive protein, an 'intermediate phenotype' for inflammation: Human twin studies reveal heritability, association with blood pressure and the metabolic syndrome, and the influence of common polymorphism at catecholaminergic/β-adrenergic pathway loci

Jennifer Wessel; Guillermo Moratorio; Fangwen Rao; Manjula Mahata; Lian Zhang; William Greene; Brinda K. Rana; Brian Kennedy; Srikrishna Khandrika; Pauline Huang; Elizabeth O. Lillie; Pei An Betty Shih; Douglas W. Smith; Gen Wen; Bruce A. Hamilton; Michael G. Ziegler; Joseph L. Witztum; Nicholas J. Schork; Geert W. Schmid-Schönbein; Daniel T. O'Connor

Background C-reactive protein (CRP) both reflects and participates in inflammation, and its circulating concentration marks cardiovascular risk. Here we sought to understand the role of heredity in determining CRP secretion. Methods CRP, as well as multiple facets of the metabolic syndrome, were measured in a series of 229 twins, both monozygotic (MZ) and dizygotic (DZ), to estimate trait heritability (h2). Single nucleotide polymorphism (SNP) genotyping was done at adrenergic pathway loci. Haplotypes were inferred from genotypes by likelihood methods. Association of CRP with hypertension and the metabolic syndrome was studied in a larger series of 732 individuals, including 79 with hypertension. Results MZ and DZ twin variance components indicated substantial h2 for CRP, at ∼56 ± 7% (P < 0.001). CRP was significantly associated (P < 0.05) with multiple features of the metabolic syndrome in twins, including body mass index (BMI), blood pressure (BP), leptin and lipids. In established hypertension, elevated CRP was associated with increased BP, BMI, insulin, HOMA (index of insulin resistance), leptin, triglycerides and norepinephrine. Twin correlations indicated pleiotropy (shared genetic determination) for CRP with BMI (P = 0.0002), leptin (P < 0.001), triglycerides (P = 0.002) and systolic blood pressure (SBP) (P = 0.042). Approximately 9800 genotypes (43 genetic variants at 17 loci) were scored within catecholaminergic pathways: biosynthetic, receptor and signal transduction. Plasma CRP concentration in twins was predicted by polymorphisms at three loci in physiological series within the catecholamine biosynthetic/β-adrenergic pathway: TH (tyrosine hydroxylase), ADRB1 (β1-adrenergic receptor) and ADRB2 (β2-adrenergic receptor). In the TH promoter, common allelic variation accounted for up to ∼6.6% of CRP inter-individual variance. At ADRB1, variation at Gly389Arg predicted ∼2.8% of CRP, while ADRB2 promoter variants T-47C and T-20C also contributed. Particular haplotypes and diplotypes at TH and ADRB1 also predicted CRP, though typically no better than single SNPs alone. Epistasis (gene-by-gene interaction) was demonstrated for particular combinations of TH and ADRB2 alleles, consistent with their actions in a pathway in series. In an illustration of pleiotropy, not only CRP but also plasma triglycerides were predicted by polymorphisms at TH (P = 0.0053) and ADRB2 (P = 0.027). Conclusions CRP secretion is substantially heritable in humans, demonstrating pleiotropy (shared genetic determination) with other features of the metabolic syndrome, such as BMI, triglycerides or BP. Multiple, common genetic variants in the catecholaminergic/β-adrenergic pathway contribute to CRP, and these variants (especially at TH and ADRB2) seem to interact (epistasis) to influence the trait. The results uncover novel pathophysiological links between the adrenergic system and inflammation, and suggest new strategies to probe the role and actions of inflammation within this setting.


American Journal of Human Genetics | 2004

Both Rare and Common Polymorphisms Contribute Functional Variation at CHGA, a Regulator of Catecholamine Physiology

Gen Wen; Sushil K. Mahata; Peter E. Cadman; Manjula Mahata; Sajalendu Ghosh; Nitish R. Mahapatra; Fangwen Rao; Mats Stridsberg; Douglas W. Smith; Payam Mahboubi; Nicholas J. Schork; Daniel T. O’Connor; Bruce A. Hamilton

The chromogranin/secretogranin proteins are costored and coreleased with catecholamines from secretory vesicles in chromaffin cells and noradrenergic neurons. Chromogranin A (CHGA) regulates catecholamine storage and release through intracellular (vesiculogenic) and extracellular (catecholamine release-inhibitory) mechanisms. CHGA is a candidate gene for autonomic dysfunction syndromes, including intermediate phenotypes that contribute to human hypertension. Here, we show a surprising pattern of CHGA variants that alter the expression and function of this gene, both in vivo and in vitro. Functional variants include both common alleles that quantitatively alter gene expression and rare alleles that qualitatively change the encoded product to alter the signaling potency of CHGA-derived catecholamine release-inhibitory catestatin peptides.


Circulation | 2007

Tyrosine Hydroxylase, the Rate-Limiting Enzyme in Catecholamine Biosynthesis Discovery of Common Human Genetic Variants Governing Transcription, Autonomic Activity, and Blood Pressure In Vivo

Fangwen Rao; Lian Zhang; Jennifer Wessel; Kuixing Zhang; Gen Wen; Brian Kennedy; Brinda K. Rana; Madhusudan Das; Juan L. Rodriguez-Flores; Douglas W. Smith; Peter E. Cadman; Rany M. Salem; Sushil K. Mahata; Nicholas J. Schork; Laurent Taupenot; Michael G. Ziegler; Daniel T. O’Connor

Background— Tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine biosynthesis. Does common genetic variation at human TH alter autonomic activity and predispose to cardiovascular disease? We undertook systematic polymorphism discovery at the TH locus and then tested variants for contributions to sympathetic function and blood pressure. Methods and Results— We resequenced 80 ethnically diverse individuals across the TH locus. One hundred seventy-two twin pairs were evaluated for sympathetic traits, including catecholamine production, reflex control of the circulation, and environmental (cold) stress responses. To evaluate hypertension, we genotyped subjects selected from the most extreme diastolic blood pressure percentiles in the population. Human TH promoter haplotype/reporter plasmids were transfected into chromaffin cells. Forty-nine single-nucleotide polymorphisms were discovered, but coding region polymorphism did not account for common phenotypic variation. A block of linkage disequilibrium spanned 4 common variants in the proximal promoter. Catecholamine secretory traits were significantly heritable (h2), as were stress-induced blood pressure changes. In the TH promoter, significant associations were found for urinary catecholamine excretion and for blood pressure response to stress. TH promoter haplotype 2 (TGGG) showed pleiotropy, increasing both norepinephrine excretion and blood pressure during stress. Coalescent simulations suggest that TH haplotype 2 likely arose ≈380 000 years ago. In hypertension, 2 independent case-control studies (1266 subjects with 53% women and 927 subjects with 24% women) replicated the effect of C-824T in the determination of blood pressure. Conclusions— We conclude that human catecholamine secretory traits are heritable, displaying joint genetic determination (pleiotropy) with autonomic activity and finally with blood pressure in the population. Catecholamine secretion is influenced by genetic variation in the adrenergic pathway encoding catecholamine synthesis, especially at the classically rate-limiting step, TH. The results suggest novel pathophysiological links between a key adrenergic locus, catecholamine metabolism, and blood pressure and suggest new strategies to approach the mechanism, diagnosis, and treatment of systemic hypertension.


Hypertension | 2000

Malignant Pheochromocytoma: Chromaffin Granule Transmitters and Response to Treatment

Fangwen Rao; Harry R. Keiser; Daniel T. O’Connor

Chromaffin granule transmitters such as chromogranin A and catecholamines have been used in the diagnosis of pheochromocytoma, but the diagnostic and prognostic value of chromogranin A have not been explored in malignant pheochromocytoma. We evaluated these transmitters in patients with pheochromocytoma (n=27), both benign (n=13) and malignant (n=14). Patients with benign pheochromocytoma were studied before and after surgical excision (n=6), whereas patients with malignant pheochromocytoma were evaluated before and after combination chemotherapy with regular cycles of cyclophosphamide/dacarbazine/vincristine (nonrandomized trial in n=9). During treatment, patient responses to chemotherapy were divided according to anatomic and clinical criteria: responders (n=5) versus nonresponders (n=4). Plasma chromogranin A rose progressively (P <0.0001) from control subjects (48.0±3.0 ng/mL) to benign pheochromocytoma (188±40.5 ng/mL) to malignant pheochromocytoma (2932±960 ng/mL). Parallel changes were seen for plasma norepinephrine (P <0.0001), though plasma epinephrine was actually lower in malignant than benign pheochromocytoma (P =0.0182). In bivariate analyses, chromogranin A, norepinephrine, and epinephrine discriminated between pheochromocytoma and control subjects (all P <0.0001), whereas in a multivariate analyses, norepinephrine was the best discriminator (P =0.011). Chromogranin A was significantly different in benign versus malignant pheochromocytoma on both bivariate (P =0.0003) and multivariate (P =0.011) analyses. After excision of benign pheochromocytoma, chromogranin A (P =0.028), norepinephrine (P =0.047), and epinephrine (P =0.037) all fell to values near normal. During chemotherapy of malignant pheochromocytoma (n=9), plasma chromogranin A (P =0.047) and norepinephrine (P =0.02) fell but not epinephrine. In 5 responders to chemotherapy, there were significant declines in chromogranin A (P =0.03) and norepinephrine (P =0.03) but not epinephrine; in 4 nonresponders, none of the transmitters changed. Plasma chromogranin A varied longitudinally with tumor response and relapse. We conclude that plasma chromogranin A is an effective tool in the diagnosis of pheochromocytoma, and markedly elevated chromogranin A may point to malignant pheochromocytoma. During chemotherapy of malignant pheochromocytoma, chromogranin A can be used to gauge tumor response and relapse.


Hypertension | 2006

Polymorphisms and Haplotypes of the Regulator of G Protein Signaling-2 Gene in Normotensives and Hypertensives

Evan L. Riddle; Brinda K. Rana; Kenton K. Murthy; Fangwen Rao; Eleazar Eskin; Daniel T. O’Connor; Paul A. Insel

Regulator of G protein signaling (RGS) proteins stimulate the GTPase activity of G&agr; subunits of heterotrimeric G proteins, thereby negatively regulating G protein-coupled receptor signaling. RGS2, which preferentially alters G&agr;q-mediated signaling, may be important for cardiovascular health, because knockout of RGS2 in mice is associated with altered smooth muscle relaxation and hypertension. In this study, we determined genetic variation in the human RGS2 gene by sequencing DNA in normotensive and hypertensive populations of whites (n=128) and blacks (n=122). We identified 14 single nucleotide polymorphisms and 2 two-base insertion/deletions (in/del; 1891 to 1892 TC and 2138 to 2139 AA). Although most of the genetic variants were found at low allelic frequency, in particular in coding regions, the 1891 to 1892 TC and 2138 to 2139 AA intronic in/del were in linkage disequilibrium and were associated with hypertension in blacks (P<0.05). We defined several haplotypes for the RGS2 gene, certain of which showed striking differences between whites and blacks. Additionally, 2 haplotypes had significantly different frequencies between hypertensive and normotensive black groups (P<0.05). We conclude that RGS2 is genetically conserved within coding regions but that the intronic in/del define ethnicity-specific haplotypes. Moreover, certain RGS2 variants that occur at greater frequency in hypertensive blacks may serve as ethnicity-specific genetic variants for this disease.


Hypertension | 2006

Rho Kinase Polymorphism Influences Blood Pressure and Systemic Vascular Resistance in Human Twins Role of Heredity

Tammy M. Seasholtz; Jennifer Wessel; Fangwen Rao; Brinda K. Rana; Srikrishna Khandrika; Brian Kennedy; Elizabeth O. Lillie; Michael G. Ziegler; Douglas W. Smith; Nicholas J. Schork; Joan Heller Brown; Daniel T. O’Connor

The Rho/Rho kinase (ROCK) pathway is implicated in experimental hypertension. We, therefore, explored the role of ROCK2 genetic variation in human blood pressure (BP) regulation, exploiting the advantages of a human twin sample to probe heritability. The focus of this work is the common nonsynonymous variant at ROCK2: Thr431Asn. Cardiovascular and autonomic traits displayed substantial heritability (from ≈33% to 71%; P<0.05). The Asn/Asn genotype (compared with Asn/Thr or Thr/Thr) was associated with greater resting systolic (P<0.001), diastolic (P<0.0001), and mean BP (P<0.0001); allelic variation at ROCK2 accounted for up to ≈5% of BP variation (P<0.0001). Systemic vascular resistance was higher in Asn/Asn individuals (P=0.049), whereas cardiac output, large artery compliance, and vasoactive hormone secretion were not different. Coupling of the renin-angiotensin system to systemic resistance and BP was diminished in Asn/Asn homozygotes, suggesting genetic pleiotropy of Thr431Asn, confirmed by bivariate genetic analyses. The Asn/Asn genotype also predicted higher BP after environmental (cold) stress. The rise in heart rate after cold was less pronounced in Asn/Asn individuals, consistent with intact baroreceptor function, and baroreceptor slope was not influenced by genotype. Common genetic variation (Thr431Asn) at ROCK2 predicts increased BP, systemic vascular resistance (although not large artery compliance), and resistance in response to the endogenous renin-angiotensin system, indicating a resistance vessel-based effect on elevated BP. The results suggest that common variation in ROCK2 exerts systemic resistance-mediated changes in BP, documenting a novel mechanism for human circulatory control, and suggesting new possibilities for diagnostic profiling and treatment of subjects at risk of developing hypertension.


Clinical and Experimental Hypertension | 2009

Matrix Metalloproteinases: Discrete Elevations in Essential Hypertension and Hypertensive End-Stage Renal Disease

Ryan S. Friese; Fangwen Rao; Srikrishna Khandrika; Brenda Thomas; Michael G. Ziegler; Geert W. Schmid-Schönbein; Daniel T. O’Connor

The contribution of inflammation to hypertension and target organ damage is under investigation. The matrix metalloproteinase (MMP) enzymes are inflammatory mediators that may contribute to hypertension and its target organ consequences. Here we probe MMPs as inflammatory mediators in hypertension, by studying all three MMP classes in uncomplicated hypertension as well hypertension with profound renal damage, such as hypertensive end-stage renal disease (ESRD). We assayed plasma levels of five MMPs: one collagenase (MMP-1), two gelatinases (MMP-2, MMP-9), and two stromelysins (MMP-3, MMP-10). In hypertension, MMP-9 was elevated versus normotensive controls. Systolic blood pressure (SBP) in all three subject groups positively correlated with MMP-9. In hypertensive-ESRD, MMP-2 and MMP-10 were elevated compared to both hypertensive and normotensive subjects. Several correlations occurred across MMPs, suggesting coordinate biosynthetic control. Our results suggest discrete patterns of MMP overexpression in hypertension, with MMP-9 elevated early, and MMP-2 and MMP-10 linked to target organ damage.


Clinical and Experimental Hypertension | 2010

Direct Vasoactive Effects of the Chromogranin A (CHGA) Peptide Catestatin in Humans In Vivo

Maple M. Fung; Rany M. Salem; Parag Mehtani; Brenda Thomas; Christine F. Lu; Brandon Perez; Fangwen Rao; Mats Stridsberg; Michael G. Ziegler; Sushil K. Mahata; Daniel T. O'Connor

Catestatin is a bioactive peptide of chromogranin A (CHGA) that is co-released with catecholamines from secretory vesicles. Catestatin may function as a vasodilator and is diminished in hypertension. To evaluate this potential vasodilator in vivo without systemic counterregulation, we infused catestatin to target concentrations of ∼ 50, ∼ 500, ∼ 5000 nM into dorsal hand veins of 18 normotensive men and women, after pharmacologic venoconstriction with phenylephrine. Pancreastatin, another CHGA peptide, was infused as a negative control. After preconstriction to ∼ 69%, increasing concentrations of catestatin resulted in dose-dependent vasodilation (P = 0.019), in female subjects (to ∼ 44%) predominantly. The EC50 (∼ 30 nM) for vasodilation induced by catestatin was the same order of magnitude to circulating endogenous catestatin (4.4 nM). No vasodilation occurred during the control infusion with pancreastatin. Plasma CHGA, catestatin, and CHGA-to-catestatin processing were then determined in 622 healthy subjects without hypertension. Female subjects had higher plasma catestatin levels than males (P = 0.001), yet lower CHGA precursor concentrations (P = 0.006), reflecting increased processing of CHGA-to-catestatin (P < 0.001). Our results demonstrate that catestatin dilates human blood vessels in vivo, especially in females. Catestatin may contribute to sex differences in endogenous vascular tone, thereby influencing the complex predisposition to hypertension.


Circulation | 2008

Heritability and Genome-Wide Linkage in US and Australian Twins Identify Novel Genomic Regions Controlling Chromogranin A Implications for Secretion and Blood Pressure

Daniel T. O'Connor; Gu Zhu; Fangwen Rao; Laurent Taupenot; Maple M. Fung; Madhusudan Das; Sushil K. Mahata; Manjula Mahata; Lei Wang; Kuixing Zhang; Tiffany A. Greenwood; Pei-an Betty Shih; Myles Cockburn; Michael G. Ziegler; Mats Stridsberg; Nicholas G. Martin; John Whitfield

Background— Chromogranin A (CHGA) triggers catecholamine secretory granule biogenesis, and its catestatin fragment inhibits catecholamine release. We approached catestatin heritability using twin pairs, coupled with genome-wide linkage, in a series of twin and sibling pairs from 2 continents. Methods and Results— Hypertensive patients had elevated CHGA coupled with reduction in catestatin, suggesting diminished conversion of precursor to catestatin. Heritability for catestatin in twins was 44% to 60%. Six hundred fifteen nuclear families yielded 870 sib pairs for linkage, with significant logarithm of odds peaks on chromosomes 4p, 4q, and 17q. Because acidification of catecholamine secretory vesicles determines CHGA trafficking and processing to catestatin, we genotyped at positional candidate ATP6N1, bracketed by peak linkage markers on chromosome 17q, encoding a subunit of vesicular H+-translocating ATPase. The minor allele diminished CHGA secretion and processing to catestatin. The ATP6N1 variant also influenced blood pressure in 1178 individuals with the most extreme blood pressure values in the population. In chromaffin cells, inhibition of H+-ATPase diverted CHGA from regulated to constitutive secretory pathways. Conclusions— We established heritability of catestatin in twins from 2 continents. Linkage identified 3 regions contributing to catestatin, likely novel determinants of sympathochromaffin exocytosis. At 1 such positional candidate (ATP6N1), variation influenced CHGA secretion and processing to catestatin, confirming the mechanism of a novel trans-QTL for sympathochromaffin activity and blood pressure.

Collaboration


Dive into the Fangwen Rao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manjula Mahata

University of California

View shared research outputs
Top Co-Authors

Avatar

Sushil K. Mahata

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Kuixing Zhang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maple M. Fung

University of California

View shared research outputs
Top Co-Authors

Avatar

Brinda K. Rana

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge