Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Caroline M. Nievergelt is active.

Publication


Featured researches published by Caroline M. Nievergelt.


Cell Stem Cell | 2011

Dynamic Changes in the Copy Number of Pluripotency and Cell Proliferation Genes in Human ESCs and iPSCs during Reprogramming and Time in Culture

Louise C. Laurent; Igor Ulitsky; Ileana Slavin; Ha Tran; Andrew J. Schork; Robert Morey; Candace L. Lynch; Julie V. Harness; S.J Lee; Maria J. Barrero; Sherman Ku; Marina Martynova; Ruslan Semechkin; Vasiliy Galat; Joel M. Gottesfeld; Juan Carlos Izpisua Belmonte; Charles E. Murry; Hans S. Keirstead; Hyun Sook Park; Uli Schmidt; Andrew L. Laslett; Franz Josef Müller; Caroline M. Nievergelt; Ron Shamir; Jeanne F. Loring

Genomic stability is critical for the clinical use of human embryonic and induced pluripotent stem cells. We performed high-resolution SNP (single-nucleotide polymorphism) analysis on 186 pluripotent and 119 nonpluripotent samples. We report a higher frequency of subchromosomal copy number variations in pluripotent samples compared to nonpluripotent samples, with variations enriched in specific genomic regions. The distribution of these variations differed between hESCs and hiPSCs, characterized by large numbers of duplications found in a few hESC samples and moderate numbers of deletions distributed across many hiPSC samples. For hiPSCs, the reprogramming process was associated with deletions of tumor-suppressor genes, whereas time in culture was associated with duplications of oncogenic genes. We also observed duplications that arose during a differentiation protocol. Our results illustrate the dynamic nature of genomic abnormalities in pluripotent stem cells and the need for frequent genomic monitoring to assure phenotypic stability and clinical safety.


Hepatology | 2005

Histopathology of pediatric nonalcoholic fatty liver disease

Jeffrey B. Schwimmer; Cynthia Behling; Robert O. Newbury; Reena Deutsch; Caroline M. Nievergelt; Nicholas J. Schork; Joel E. Lavine

Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are common in children and adolescents. However, standard histological criteria for pediatric NAFLD and NASH are undeveloped. We reviewed consecutive patients ages 2 to 18 years with biopsy‐proven NAFLD diagnosed between 1997 and 2003. Biopsies were evaluated by two pathologists for individual features of steatohepatitis. Agglomerative hierarchical cluster analysis demonstrated two different forms of steatohepatitis. Type 1 was characterized by steatosis, ballooning degeneration, and perisinusoidal fibrosis; type 2 was characterized by steatosis, portal inflammation, and portal fibrosis. The study included 100 children with NAFLD. Simple steatosis was present in 16% of subjects, and advanced fibrosis was present in 8%. Type 1 NASH was present in 17% of subjects, and type 2 NASH was present in 51%. Boys were significantly (P < .01) more likely to have type 2 NASH and less likely to have type 1 NASH than girls. The NASH type differed significantly (P < .001) by race and ethnicity. Type 1 NASH was more common in white children, whereas type 2 NASH was more common in children of Asian, Native American, and Hispanic ethnicity. In cases of advanced fibrosis, the pattern was generally that of type 2 NASH. In conclusion, type 1 and type 2 NASH are distinct subtypes of pediatric NAFLD, and type 2 is the most common pattern in children. NASH subtypes should be considered when interpreting liver biopsies and planning studies of the pathophysiology, genetics, natural history, or response to treatment in pediatric NAFLD. (HEPATOLOGY 2005;42:641–649.)


Molecular Psychiatry | 2009

Genome-wide association study of bipolar disorder in European American and African American individuals

Erin N. Smith; Cinnamon S. Bloss; Thomas B. Barrett; Pamela L. Belmonte; Wade H. Berrettini; William Byerley; William Coryell; David Craig; Howard J. Edenberg; Eleazar Eskin; Tatiana Foroud; Elliot S. Gershon; Tiffany A. Greenwood; Maria Hipolito; Daniel L. Koller; William B. Lawson; Chunyu Liu; Falk W. Lohoff; Melvin G. McInnis; Francis J. McMahon; Daniel B. Mirel; Sarah S. Murray; Caroline M. Nievergelt; J. Nurnberger; Evaristus A. Nwulia; Justin Paschall; James B. Potash; John P. Rice; Thomas G. Schulze; W. Scheftner

To identify bipolar disorder (BD) genetic susceptibility factors, we conducted two genome-wide association (GWA) studies: one involving a sample of individuals of European ancestry (EA; n=1001 cases; n=1033 controls), and one involving a sample of individuals of African ancestry (AA; n=345 cases; n=670 controls). For the EA sample, single-nucleotide polymorphisms (SNPs) with the strongest statistical evidence for association included rs5907577 in an intergenic region at Xq27.1 (P=1.6 × 10−6) and rs10193871 in NAP5 at 2q21.2 (P=9.8 × 10−6). For the AA sample, SNPs with the strongest statistical evidence for association included rs2111504 in DPY19L3 at 19q13.11 (P=1.5 × 10−6) and rs2769605 in NTRK2 at 9q21.33 (P=4.5 × 10−5). We also investigated whether we could provide support for three regions previously associated with BD, and we showed that the ANK3 region replicates in our sample, along with some support for C15Orf53; other evidence implicates BD candidate genes such as SLITRK2. We also tested the hypothesis that BD susceptibility variants exhibit genetic background-dependent effects. SNPs with the strongest statistical evidence for genetic background effects included rs11208285 in ROR1 at 1p31.3 (P=1.4 × 10−6), rs4657247 in RGS5 at 1q23.3 (P=4.1 × 10−6), and rs7078071 in BTBD16 at 10q26.13 (P=4.5 × 10−6). This study is the first to conduct GWA of BD in individuals of AA and suggests that genetic variations that contribute to BD may vary as a function of ancestry.


American Journal of Medical Genetics | 2006

Suggestive evidence for association of the circadian genes PERIOD3 and ARNTL with bipolar disorder.

Caroline M. Nievergelt; Daniel F. Kripke; Thomas B. Barrett; Elyssa D. Burg; Ronald A. Remick; A. Dessa Sadovnick; Susan L. McElroy; Paul E. Keck; Nicholas J. Schork; John R. Kelsoe

Bipolar affective disorder (BPAD) is suspected to arise in part from malfunctions of the circadian system, a system that enables adaptation to a daily and seasonally cycling environment. Genetic variations altering functions of genes involved with the input to the circadian clock, in the molecular feedback loops constituting the circadian oscillatory mechanism itself, or in the regulatory output systems could influence BPAD as a result. Several human circadian system genes have been identified and localized recently, and a comparison with linkage hotspots for BPAD has revealed some correspondences. We have assessed evidence for linkage and association involving polymorphisms in 10 circadian clock genes (ARNTL, CLOCK, CRY2, CSNK1ε, DBP, GSK3β, NPAS2, PER1, PER2, and PER3) to BPAD. Linkage analysis in 52 affected families showed suggestive evidence for linkage to CSNK1ε. This finding was not substantiated in the association study. Fifty‐two SNPs in 10 clock genes were genotyped in 185 parent proband triads. Single SNP TDT analyses showed no evidence for association to BPAD. However, more powerful haplotype analyses suggest two candidates deserving further studies. Haplotypes in ARNTL and PER3 were found to be significantly associated with BPAD via single‐gene permutation tests (PG = 0.025 and 0.008, respectively). The most suggestive haplotypes in PER3 showed a Bonferroni‐corrected P‐value of PGC = 0.07. These two genes have previously been implicated in circadian rhythm sleep disorders and affective disorders. With correction for the number of genes considered and tests conducted, these data do not provide statistically significant evidence for association. However, the trends for ARNTL and PER3 are suggestive of their involvement in bipolar disorder and warrant further study in a larger sample.


Journal of Circadian Rhythms | 2009

Circadian polymorphisms associated with affective disorders

Daniel F. Kripke; Caroline M. Nievergelt; Eun-Jeong Joo; Tatyana Shekhtman; John R. Kelsoe

Background Clinical symptoms of affective disorders, their response to light treatment, and sensitivity to other circadian interventions indicate that the circadian system has a role in mood disorders. Possibly the mechanisms involve circadian seasonal and photoperiodic mechanisms. Since genetic susceptibilities contribute a strong component to affective disorders, we explored whether circadian gene polymorphisms were associated with affective disorders in four complementary studies. Methods Four groups of subjects were recruited from several sources: 1) bipolar proband-parent trios or sib-pair-parent nuclear families, 2) unrelated bipolar participants who had completed the BALM morningness-eveningness questionnaire, 3) sib pairs from the GenRed Project having at least one sib with early-onset recurrent unipolar depression, and 4) a sleep clinic patient group who frequently suffered from depression. Working mainly with the SNPlex assay system, from 2 to 198 polymorphisms in genes related to circadian function were genotyped in the participant groups. Associations with affective disorders were examined with TDT statistics for within-family comparisons. Quantitative trait associations were examined within the unrelated samples. Results In NR1D1, rs2314339 was associated with bipolar disorder (P = 0.0005). Among the unrelated bipolar participants, 3 SNPs in PER3 and CSNK1E were associated with the BALM score. A PPARGC1B coding SNP, rs7732671, was associated with affective disorder with nominal significance in bipolar family groups and independently in unipolar sib pairs. In TEF, rs738499 was associated with unipolar depression; in a replication study, rs738499 was also associated with the QIDS-SR depression scale in the sleep clinic patient sample. Conclusion Along with anti-manic effects of lithium and the antidepressant effects of bright light, these findings suggest that perturbations of the circadian gene network at several levels may influence mood disorders, perhaps ultimately through regulation of MAOA and its modulation of dopamine transmission. Twenty-three associations of circadian polymorphisms with affective symptoms met nominal significance criteria (P < 0.05), whereas 15 would be expected by chance, indicating that many represented false discoveries (Type II errors). Some evidence of replication has been gathered, but more studies are needed to ascertain if circadian gene polymorphisms contribute to susceptibility to affective disorders.


Nature | 2015

Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder

Jerome Mertens; Qiu-Wen Wang; Yongsung Kim; Diana X. Yu; Son Pham; Bo Yang; Yi Zheng; Kenneth E. Diffenderfer; Jian Zhang; Sheila Soltani; Tameji Eames; Simon T. Schafer; Leah Boyer; Maria C. Marchetto; John I. Nurnberger; Joseph R. Calabrese; Ketil J. Oedegaard; Michael McCarthy; Peter P. Zandi; Martin Alda; Caroline M. Nievergelt; Shuangli Mi; Kristen J. Brennand; John R. Kelsoe; Fred H. Gage; Jun Yao

Bipolar disorder is a complex neuropsychiatric disorder that is characterized by intermittent episodes of mania and depression; without treatment, 15% of patients commit suicide. Hence, it has been ranked by the World Health Organization as a top disorder of morbidity and lost productivity. Previous neuropathological studies have revealed a series of alterations in the brains of patients with bipolar disorder or animal models, such as reduced glial cell number in the prefrontal cortex of patients, upregulated activities of the protein kinase A and C pathways and changes in neurotransmission. However, the roles and causation of these changes in bipolar disorder have been too complex to exactly determine the pathology of the disease. Furthermore, although some patients show remarkable improvement with lithium treatment for yet unknown reasons, others are refractory to lithium treatment. Therefore, developing an accurate and powerful biological model for bipolar disorder has been a challenge. The introduction of induced pluripotent stem-cell (iPSC) technology has provided a new approach. Here we have developed an iPSC model for human bipolar disorder and investigated the cellular phenotypes of hippocampal dentate gyrus-like neurons derived from iPSCs of patients with bipolar disorder. Guided by RNA sequencing expression profiling, we have detected mitochondrial abnormalities in young neurons from patients with bipolar disorder by using mitochondrial assays; in addition, using both patch-clamp recording and somatic Ca2+ imaging, we have observed hyperactive action-potential firing. This hyperexcitability phenotype of young neurons in bipolar disorder was selectively reversed by lithium treatment only in neurons derived from patients who also responded to lithium treatment. Therefore, hyperexcitability is one early endophenotype of bipolar disorder, and our model of iPSCs in this disease might be useful in developing new therapies and drugs aimed at its clinical treatment.


American Journal of Human Genetics | 2005

Population Structure, Admixture, and Aging-Related Phenotypes in African American Adults: The Cardiovascular Health Study

Alex P. Reiner; Elad Ziv; Denise L. Lind; Caroline M. Nievergelt; Nicholas J. Schork; Steven R. Cummings; Angie Phong; Esteban G. Burchard; Tamara B. Harris; Bruce M. Psaty; Pui-Yan Kwok

U.S. populations are genetically admixed, but surprisingly little empirical data exists documenting the impact of such heterogeneity on type I and type II error in genetic-association studies of unrelated individuals. By applying several complementary analytical techniques, we characterize genetic background heterogeneity among 810 self-identified African American subjects sampled as part of a multisite cohort study of cardiovascular disease in older adults. On the basis of the typing of 24 ancestry-informative biallelic single-nucleotide-polymorphism markers, there was evidence of substantial population substructure and admixture. We used an allele-sharing-based clustering algorithm to infer evidence for four genetically distinct subpopulations. Using multivariable regression models, we demonstrate the complex interplay of genetic and socioeconomic factors on quantitative phenotypes related to cardiovascular disease and aging. Blood glucose level correlated with individual African ancestry, whereas body mass index was associated more strongly with genetic similarity. Blood pressure, HDL cholesterol level, C-reactive protein level, and carotid wall thickness were not associated with genetic background. Blood pressure and HDL cholesterol level varied by geographic site, whereas C-reactive protein level differed by occupation. Both ancestry and genetic similarity predicted the number and quality of years lived during follow-up, but socioeconomic factors largely accounted for these associations. When the 24 genetic markers were tested individually, there were an excess number of marker-trait associations, most of which were attenuated by adjustment for genetic ancestry. We conclude that the genetic demography underlying older individuals who self identify as African American is complex, and that controlling for both genetic admixture and socioeconomic characteristics will be required in assessing genetic associations with chronic-disease-related traits in African Americans. Complementary methods that identify discrete subgroups on the basis of genetic similarity may help to further characterize the complex biodemographic structure of human populations.


Molecular Psychiatry | 2009

Singleton deletions throughout the genome increase risk of bipolar disorder.

Dandan Zhang; Lijun Cheng; Yudong Qian; Ney Alliey-Rodriguez; John R. Kelsoe; Tiffany A. Greenwood; Caroline M. Nievergelt; Thomas B. Barrett; Rebecca McKinney; Nicholas J. Schork; Erin N. Smith; Cinnamon S. Bloss; John I. Nurnberger; Howard J. Edenberg; Tatiana Foroud; William Sheftner; William B. Lawson; Evaritus A. Nwulia; Maria Hipolito; William Coryell; John P. Rice; William Byerley; Francis J. McMahon; Thomas G. Schulze; Wade H. Berrettini; James B. Potash; Pamela L. Belmonte; Peter P. Zandi; Melvin G. McInnis; Sebastian Zöllner

An overall burden of rare structural genomic variants has not been reported in bipolar disorder (BD), although there have been reports of cases with microduplication and microdeletion. Here, we present a genome-wide copy number variant (CNV) survey of 1001 cases and 1034 controls using the Affymetrix single nucleotide polymorphism (SNP) 6.0 SNP and CNV platform. Singleton deletions (deletions that appear only once in the dataset) more than 100 kb in length are present in 16.2% of BD cases in contrast to 12.3% of controls (permutation P=0.007). This effect was more pronounced for age at onset of mania ⩽18 years old. Our results strongly suggest that BD can result from the effects of multiple rare structural variants.


JAMA Psychiatry | 2014

Assessment of Plasma C-Reactive Protein as a Biomarker of Posttraumatic Stress Disorder Risk

Satish A. Eraly; Caroline M. Nievergelt; Adam X. Maihofer; Donald A. Barkauskas; Nilima Biswas; Agorastos Agorastos; Daniel T. O’Connor; Dewleen G. Baker

IMPORTANCE Posttraumatic stress disorder (PTSD) has been associated in cross-sectional studies with peripheral inflammation. It is not known whether this observed association is the result of PTSD predisposing to inflammation (as sometimes postulated) or to inflammation predisposing to PTSD. OBJECTIVE To determine whether plasma concentration of the inflammatory marker C-reactive protein (CRP) helps predict PTSD symptoms. DESIGN, SETTING, AND PARTICIPANTS The Marine Resiliency Study, a prospective study of approximately 2600 war zone-deployed Marines, evaluated PTSD symptoms and various physiological and psychological parameters before deployment and at approximately 3 and 6 months following a 7-month deployment. Participants were recruited from 4 all-male infantry battalions imminently deploying to a war zone. Participation was requested of 2978 individuals; 2610 people (87.6%) consented and 2555 (85.8%) were included in the present analysis. Postdeployment data on combat-related trauma were included for 2208 participants (86.4% of the 2555 included) and on PTSD symptoms at 3 and 6 months after deployment for 1861 (72.8%) and 1617 (63.3%) participants, respectively. MAIN OUTCOMES AND MEASURES Severity of PTSD symptoms 3 months after deployment assessed by the Clinician-Administered PTSD Scale (CAPS). RESULTS We determined the effects of baseline plasma CRP concentration on postdeployment CAPS using zero-inflated negative binomial regression (ZINBR), a procedure designed for distributions, such as CAPS in this study, that have an excess of zeroes in addition to being positively skewed. Adjusting for the baseline CAPS score, trauma exposure, and other relevant covariates, we found baseline plasma CRP concentration to be a highly significant overall predictor of postdeployment CAPS scores (P = .002): each 10-fold increment in CRP concentration was associated with an odds ratio of nonzero outcome (presence vs absence of any PTSD symptoms) of 1.51 (95% CI, 1.15-1.97; P = .003) and a fold increase in outcome with a nonzero value (extent of symptoms when present) of 1.06 (95% CI, 0.99-1.14; P = .09). CONCLUSIONS AND RELEVANCE A marker of peripheral inflammation, plasma CRP may be prospectively associated with PTSD symptom emergence, suggesting that inflammation may predispose to PTSD.


Molecular Psychiatry | 2013

Enrichment of cis-regulatory gene expression SNPs and methylation quantitative trait loci among bipolar disorder susceptibility variants

Eric R. Gamazon; Lijun Cheng; Chunling Zhang; Dandan Zhang; Nancy J. Cox; Elliot S. Gershon; John R. Kelsoe; Tiffany A. Greenwood; Caroline M. Nievergelt; Chao Chen; Rebecca McKinney; Paul D. Shilling; Nicholas J. Schork; Erin N. Smith; Cinnamon S. Bloss; John I. Nurnberger; Howard J. Edenberg; T. Foroud; Daniel L. Koller; William A. Scheftner; William Coryell; John P. Rice; William B. Lawson; Evaristus A. Nwulia; Maria Hipolito; William Byerley; Francis J. McMahon; Thomas G. Schulze; Wade H. Berrettini; James B. Potash

We conducted a systematic study of top susceptibility variants from a genome-wide association (GWA) study of bipolar disorder to gain insight into the functional consequences of genetic variation influencing disease risk. We report here the results of experiments to explore the effects of these susceptibility variants on DNA methylation and mRNA expression in human cerebellum samples. Among the top susceptibility variants, we identified an enrichment of cis regulatory loci on mRNA expression (eQTLs), and a significant excess of quantitative trait loci for DNA CpG methylation, hereafter referred to as methylation quantitative trait loci (mQTLs). Bipolar disorder susceptibility variants that cis regulate both cerebellar expression and methylation of the same gene are a very small proportion of bipolar disorder susceptibility variants. This finding suggests that mQTLs and eQTLs provide orthogonal ways of functionally annotating genetic variation within the context of studies of pathophysiology in brain. No lymphocyte mQTL enrichment was found, suggesting that mQTL enrichment was specific to the cerebellum, in contrast to eQTLs. Separately, we found that using mQTL information to restrict the number of single-nucleotide polymorphisms studied enhances our ability to detect a significant association. With this restriction a priori informed by the observed functional enrichment, we identified a significant association (rs12618769, Pbonferroni<0.05) from two other GWA studies (TGen+GAIN; 2191 cases and 1434 controls) of bipolar disorder, which we replicated in an independent GWA study (WTCCC). Collectively, our findings highlight the importance of integrating functional annotation of genetic variants for gene expression and DNA methylation to advance the biological understanding of bipolar disorder.

Collaboration


Dive into the Caroline M. Nievergelt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fangwen Rao

University of California

View shared research outputs
Top Co-Authors

Avatar

John R. Kelsoe

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manjula Mahata

University of California

View shared research outputs
Top Co-Authors

Avatar

Kuixing Zhang

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge