Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fanjie Meng is active.

Publication


Featured researches published by Fanjie Meng.


Journal of Cell Science | 2011

Visualizing dynamic cytoplasmic forces with a compliance-matched FRET sensor

Fanjie Meng; Frederick Sachs

Mechanical forces are ubiquitous modulators of cell activity but little is known about the mechanical stresses in the cell. Genetically encoded FRET-based force sensors now allow the measurement of local stress in specific host proteins in vivo in real time. For a minimally invasive probe, we designed one with a mechanical compliance matching that of many common cytoskeleton proteins. sstFRET is a cassette composed of Venus and Cerulean linked by a spectrin repeat. The stress sensitivity of the probe was measured in solution using DNA springs to push the donor and acceptor apart with 5–7 pN and this produced large changes in FRET. To measure cytoskeletal stress in vivo we inserted sstFRET into α-actinin and expressed it in HEK and BAEC cells. Time-lapse imaging showed the presence of stress gradients in time and space, often uncorrelated with obvious changes in cell shape. The gradients could be rapidly relaxed by thrombin-induced cell contraction associated with inhibition of myosin II. The tension in actinin fluctuated rapidly (scale of seconds) illustrating a cytoskeleton in dynamic equilibrium. Stress in the cytoskeleton can be driven by macroscopic stresses applied to the cell. Using sstFRET as a tool to measure internal stress, we tested the prediction that osmotic pressure increases cytoskeletal stress. As predicted, hypotonic swelling increased the tension in actinin, confirming the model derived from AFM. Anisotonic stress also produced a novel transient (~2 minutes) decrease in stress upon exposure to a hypotonic challenge, matched by a transient increase with hypertonic stress. This suggests that, at rest, the stress axis of actinin is not parallel to the stress axis of actin and that swelling can reorient actinin to lie more parallel where it can absorb a larger fraction of the total stress. Protein stress sensors are opening new perspectives in cell biology.


FEBS Journal | 2008

A FRET based mechanical stress sensor for specific proteins in situ

Fanjie Meng; Thomas M. Suchyna; Frederick Sachs

To measure mechanical stress in real time, we designed a fluorescence resonance energy transfer (FRET) cassette, denoted stFRET, which could be inserted into structural protein hosts. The probe was composed of a green fluorescence protein pair, Cerulean and Venus, linked with a stable α‐helix. We measured the FRET efficiency of the free cassette protein as a function of the length of the linker, the angles of the fluorophores, temperature and urea denaturation, and protease treatment. The linking helix was stable to 80 °C, unfolded in 8 m urea, and rapidly digested by proteases, but in all cases the fluorophores were unaffected. We modified the α‐helix linker by adding and subtracting residues to vary the angles and distance between the donor and acceptor, and assuming that the cassette was a rigid body, we calculated its geometry. We tested the strain sensitivity of stFRET by linking both ends to a rubber sheet subjected to equibiaxial stretch. FRET decreased proportionally to the substrate strain. The naked cassette expressed well in human embryonic kidney‐293 cells and, surprisingly, was concentrated in the nucleus. However, when the cassette was located into host proteins such α‐actinin, nonerythrocyte spectrin and filamin A, the labeled hosts expressed well and distributed normally in cell lines such as 3T3, where they were stressed at the leading edge of migrating cells and relaxed at the trailing edge. When collagen‐19 was labeled near its middle with stFRET, it expressed well in Caenorhabditis elegans, distributing similarly to hosts labeled with a terminal green fluorescent protein, and the worms behaved normally.


FEBS Journal | 2008

A fluorescence energy transfer-based mechanical stress sensor for specific proteins in situ.

Fanjie Meng; Thomas M. Suchyna; Frederick Sachs

To measure mechanical stress in real time, we designed a fluorescence resonance energy transfer (FRET) cassette, denoted stFRET, which could be inserted into structural protein hosts. The probe was composed of a green fluorescence protein pair, Cerulean and Venus, linked with a stable α‐helix. We measured the FRET efficiency of the free cassette protein as a function of the length of the linker, the angles of the fluorophores, temperature and urea denaturation, and protease treatment. The linking helix was stable to 80 °C, unfolded in 8 m urea, and rapidly digested by proteases, but in all cases the fluorophores were unaffected. We modified the α‐helix linker by adding and subtracting residues to vary the angles and distance between the donor and acceptor, and assuming that the cassette was a rigid body, we calculated its geometry. We tested the strain sensitivity of stFRET by linking both ends to a rubber sheet subjected to equibiaxial stretch. FRET decreased proportionally to the substrate strain. The naked cassette expressed well in human embryonic kidney‐293 cells and, surprisingly, was concentrated in the nucleus. However, when the cassette was located into host proteins such α‐actinin, nonerythrocyte spectrin and filamin A, the labeled hosts expressed well and distributed normally in cell lines such as 3T3, where they were stressed at the leading edge of migrating cells and relaxed at the trailing edge. When collagen‐19 was labeled near its middle with stFRET, it expressed well in Caenorhabditis elegans, distributing similarly to hosts labeled with a terminal green fluorescent protein, and the worms behaved normally.


Journal of Cell Science | 2012

Orientation-based FRET sensor for real-time imaging of cellular forces

Fanjie Meng; Frederick Sachs

Mechanical stress is an unmapped source of free energy in cells. Mapping the stress fields in a heterogeneous time-dependent environment like that found in cells requires probes that are specific for different proteins and respond to biologically relevant forces with minimal disturbance to the host system. To meet these goals, we have designed a genetically encoded stress sensor with minimal volume and high sensitivity and dynamic range. The new FRET-based sensor, called cpstFRET, is designed to be modulated by the angles between the donor and acceptor rather than the distance between them. Relative to other probes, it is physically smaller and exhibits a greater dynamic range and sensitivity and expresses well. For in vivo testing, we measured stress gradients in time and space in non-erythroid spectrin in several different cell types and found that spectrin is under constitutive stress in some cells but not in others. Stresses appear to be generated by both F-actin and tubulin. The probe revealed, for the first time, that spectrin undergoes time-dependent force modulation during cell migration. cpstFRET can be employed in vitro, in vivo and in situ, and when incorporated into biologically expressed extracellular polymers such as collagen, it can report multidimensional stress fields.


American Journal of Physiology-cell Physiology | 2011

Real-time observation of flow-induced cytoskeletal stress in living cells

Jason Rahimzadeh; Fanjie Meng; Fredrick Sachs; Jianbin Wang; Deepika Verma; Susan Z. Hua

The mechanical stress due to shear flow has profound effects on cell proliferation, transport, gene expression, and apoptosis. The mechanisms for flow sensing and transduction are unclear, but it is postulated that fluid flow pulls upon the apical surface, and the resulting stress is eventually transmitted through the cytoskeleton to adhesion plaques on the basal surface. Here we report a direct observation of this flow-induced stress in the cytoskeleton in living cells using a parallel plate microfluidic chip with a fluorescence resonance energy transfer (FRET)-based mechanical stress sensor in actinin. The sensing cassette was genetically inserted into the cytoskeletal host protein and transfected into Madin-Darby canine kidney cells. A shear stress of 10 dyn/cm(2) resulted in a rapid increase in the FRET ratio indicating a decrease in stress across actinin with flow. The effect was reversible, and cells were able to respond to repeated stimulation and showed adaptive changes in the cytoskeleton. Flow-induced Ca(2+) elevation did not affect the response, suggesting that flow-induced changes in actinin stress are insensitive to intracellular Ca(2+) level. The reduction in FRET ratio suggests actin filaments are under normal compression in the presence of flow shear stress due to changes in cell shape, and/or actinin is not in series with actin. Treatment with cytochalasin-D that disrupts F-actin reduced prestress and the response to flow. The FRET/flow method is capable of resolving changes of stress in multiple proteins with optical spatial resolution and time resolution >1 Hz. This promises to provide insight into the force distribution and transduction in all cells.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Actin stress in cell reprogramming

Jun Guo; Yuexiu Wang; Frederick Sachs; Fanjie Meng

Significance Mechanical signaling plays many roles in cell physiology, including stem cell differentiation and reprogramming. To better understand the roles of mechanical forces in stem cells, we created genetically coded probes for actin that enables the direct measurement of forces in actin in living cells. This is the first force probe created for oligomeric proteins. We reprogrammed HEK-293 and Madin-Darby canine kidney cells into stem-like cells by culturing them on a soft substrate without using transcription factors. The mechanical properties of the microenvironment, and thus the local forces, promote cell reprogramming. Surprisingly, the cells showed close association of stemness to high tension in actin. Given the universal presence of actin in animal cells, the actin force probes have broad applications in biology. Cell mechanics plays a role in stem cell reprogramming and differentiation. To understand this process better, we created a genetically encoded optical probe, named actin–cpstFRET–actin (AcpA), to report forces in actin in living cells in real time. We showed that stemness was associated with increased force in actin. We reprogrammed HEK-293 cells into stem-like cells using no transcription factors but simply by softening the substrate. However, Madin-Darby canine kidney (MDCK) cell reprogramming required, in addition to a soft substrate, Harvey rat sarcoma viral oncogene homolog expression. Replating the stem-like cells on glass led to redifferentiation and reduced force in actin. The actin force probe was a FRET sensor, called cpstFRET (circularly permuted stretch sensitive FRET), flanked by g-actin subunits. The labeled actin expressed efficiently in HEK, MDCK, 3T3, and bovine aortic endothelial cells and in multiple stable cell lines created from those cells. The viability of the cell lines demonstrated that labeled actin did not significantly affect cell physiology. The labeled actin distribution was similar to that observed with GFP-tagged actin. We also examined the stress in the actin cross-linker actinin. Actinin force was not always correlated with actin force, emphasizing the need for addressing protein specificity when discussing forces. Because actin is a primary structural protein in animal cells, understanding its force distribution is central to understanding animal cell physiology and the many linked reactions such as stress-induced gene expression. This new probe permits measuring actin forces in a wide range of experiments on preparations ranging from isolated proteins to transgenic animals.


Antioxidants & Redox Signaling | 2014

Fluorescence-Based Force/Tension Sensors: A Novel Tool to Visualize Mechanical Forces in Structural Proteins in Live Cells

Jun Guo; Frederick Sachs; Fanjie Meng

SIGNIFICANCE Three signaling systems, chemical, electrical, and mechanical, ubiquitously contribute to cellular activities. There is limited information on the mechanical signaling system because of a lack of tools to measure stress in specific proteins. Although significant advances in methodologies such as atomic force microscopy and laser tweezers have achieved great success in single molecules and measuring the mean properties of cells and tissues, they cannot deal with specific proteins in live cells. RECENT ADVANCES To remedy the situation, we developed a family of genetically encoded optical force sensors to measure the stress in structural proteins in living cells. The sensors can be incorporated into specific proteins and are not harmful in transgenic animals. The chimeric proteins distribute and function as their wild-type counterparts, and local stress can be read out from changes in Förster resonance energy transfer (FRET). CRITICAL ISSUES Our original sensor used two mutant green fluorescence proteins linked by an alpha helix that served as a linking spring. Ever since, we have improved the probe design in a number of ways. For example, we replaced the helical linker with more common elastic protein domains to better match the compliance of the wild-type hosts. We greatly improved sensitivity by using the angular dependence of FRET rather than the distance dependence as the transduction mechanism, because that has nearly 100% efficiency at rest and nearly zero when stretched. FUTURE DIRECTIONS These probes enable researchers to investigate the roles of mechanical force in cellular activities at the level of single molecules, cells, tissues, and whole animals.


Analytical Chemistry | 2008

Contribution of Aquaporins to Cellular Water Transport Observed by a Microfluidic Cell Volume Sensor

Jinseok Heo; Fanjie Meng; Susan Z. Hua

Here we demonstrate that an impedance-based microfluidic cell volume sensor can be used to study the roles of aquaporin (AQP) in cellular water permeability and screen AQP-specific drugs. Human embryonic kidney (HEK-293) cells were transiently transfected with AQP3- or AQP4-encoding genes to express AQPs in plasma membranes. The swelling of cells in response to hypotonic stimulation was traced in real time using the sensor. Two time constants were obtained by fitting the swelling curves with a two-exponential function, a fast time constant associated with osmotic water permeability of AQP-expressing cells and a slow phase time constant associated mainly with water diffusion through lipid bilayers in the nontransfected cells. The AQP-expressing cells showed at least 10× faster osmotic water transport than control cells. Using the volume sensor, we examined the effects of Hg2+ and Ni2+ on the water transport via AQPs. Hg2+ inhibited the water flux in AQP3-expressing cells irreversibly, while Ni2+ blocked the AQP3 channels reversibly. Neither of the two ions blocked the AQP4 channels. The microfluidic volume sensor can sense changes in cell volume in real time, which enables perfusion of various reagents sequentially. It provides a convenient tool for studying the effect of reagents on the function and regulation mechanism of AQPs.


Experimental Cell Research | 2014

Direct observation of α-actinin tension and recruitment at focal adhesions during contact growth.

Nannan Ye; Deepika Verma; Fanjie Meng; Michael W. Davidson; Kevin Suffoletto; Susan Z. Hua

Adherent cells interact with extracellular matrix via cell-substrate contacts at focal adhesions. The dynamic assembly and disassembly of focal adhesions enables cell attachment, migration and growth. While the influence of mechanical forces on the formation and growth of focal adhesions has been widely observed, the force loading on specific proteins at focal adhesion complex is not clear. By co-expressing force sensitive α-actinin FRET probes and fluorescence labeled paxillin in MDCK cells, we have simultaneously observed the time-dependent changes in tension in α-actinin and the dynamics of focal adhesion during cell migration. We show that increase in tension in α-actinin at the focal adhesion coincides with elongation of the adhesion in its growth phase. The enlargement of focal adhesion is through a force sensitive recruitment of α-actinin and paxillin to the adhesion sites. Changes in α-actinin tension and correlated relocation of α-actinin in an active adhesion also guide the growth direction of the adhesion. The results support the model that cytoskeletal tension is coupled to focal adhesion via the linking protein, α-actinin at the adhesion complex. Lysophosphatidic acid caused an immediate increase in α-actinin tension followed by drastic focal adhesion formation and elongation. Application of Rho-ROCK inhibitor, Y27632, resulted in reversible reduction in tension in α-actinin and disassociation of focal adhesion, suggesting the involvement of myosin-II mediated contractile force in the focal adhesion dynamics. These findings suggest that α-actinin not only serves as a physical linker between cytoskeleton and integrin, but also participates in force transmission at adhesion sites to facilitate adhesion׳s growth.


Communicative & Integrative Biology | 2011

Genetically encoded force sensors for measuring mechanical forces in proteins

Yuexiu Wang; Fanjie Meng; Frederick Sachs

There are three sources of free energy for cells: chemical potential, electrical potential and mechanical potential. There is little known about the last one since there have not been simple ways to measure stress in proteins in cells. We have now developed genetically encoded force sensors to assess the stress in fibrous proteins in living cells. These FRET based fluorescence sensors can be read out at video rates and provide real time maps of the stress distribution in cells, tissues and animals. The sensors can be inserted into specific proteins and in general do not disturb the normal function or anatomy. The original sensors used mutant GFPs linked by elastic linkers. These sensors provide a linear output with applied stress but the response is linear in strain. To improve contrast and dynamic range we have now developed a new class of sensors that are smaller making them less invasive, and have much higher intrinsic sensitivity since force modulates the angle between the donor and acceptor much more than the distance between them. Known as cpstFRET, the probe shows improved biocompatibility, wider dynamic range and higher sensitivity.

Collaboration


Dive into the Fanjie Meng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nannan Ye

University at Buffalo

View shared research outputs
Top Co-Authors

Avatar

Jun Guo

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuexiu Wang

Capital Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge