Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susan Z. Hua is active.

Publication


Featured researches published by Susan Z. Hua.


American Journal of Physiology-cell Physiology | 2011

Real-time observation of flow-induced cytoskeletal stress in living cells

Jason Rahimzadeh; Fanjie Meng; Fredrick Sachs; Jianbin Wang; Deepika Verma; Susan Z. Hua

The mechanical stress due to shear flow has profound effects on cell proliferation, transport, gene expression, and apoptosis. The mechanisms for flow sensing and transduction are unclear, but it is postulated that fluid flow pulls upon the apical surface, and the resulting stress is eventually transmitted through the cytoskeleton to adhesion plaques on the basal surface. Here we report a direct observation of this flow-induced stress in the cytoskeleton in living cells using a parallel plate microfluidic chip with a fluorescence resonance energy transfer (FRET)-based mechanical stress sensor in actinin. The sensing cassette was genetically inserted into the cytoskeletal host protein and transfected into Madin-Darby canine kidney cells. A shear stress of 10 dyn/cm(2) resulted in a rapid increase in the FRET ratio indicating a decrease in stress across actinin with flow. The effect was reversible, and cells were able to respond to repeated stimulation and showed adaptive changes in the cytoskeleton. Flow-induced Ca(2+) elevation did not affect the response, suggesting that flow-induced changes in actinin stress are insensitive to intracellular Ca(2+) level. The reduction in FRET ratio suggests actin filaments are under normal compression in the presence of flow shear stress due to changes in cell shape, and/or actinin is not in series with actin. Treatment with cytochalasin-D that disrupts F-actin reduced prestress and the response to flow. The FRET/flow method is capable of resolving changes of stress in multiple proteins with optical spatial resolution and time resolution >1 Hz. This promises to provide insight into the force distribution and transduction in all cells.


American Journal of Physiology-cell Physiology | 2010

A mechanosensitive ion channel regulating cell volume

Susan Z. Hua; Philip A. Gottlieb; Jinseok Heo; Frederick Sachs

Cells respond to a hyposmotic challenge by swelling and then returning toward the resting volume, a process known as the regulatory volume decrease or RVD. The sensors for this process have been proposed to include cationic mechanosensitive ion channels that are opened by membrane tension. We tested this hypothesis using a microfluidic device to measure cell volume and the peptide GsMTx4, a specific inhibitor of cationic mechanosensitive channels. GsMTx4 had no effect on RVD in primary rat astrocytes or Madin-Darby canine kidney (MDCK) cells but was able to completely inhibit RVD and the associated Ca(2+) uptake in normal rat kidney (NRK-49F) cells in a dose-dependent manner. Gadolinium (Gd(3+)), a nonspecific blocker of many mechanosensitive channels, inhibited RVD and Ca(2+) uptake in all three cell types, demonstrating the existence of at least two types of volume sensors. Single-channel stretch-activated currents are present in outside-out patches from NRK-49F, MDCK, and astrocytes, and they are reversibly inhibited by GsMTx4. While mechanosensitive channels are involved in volume regulation, their role for volume sensing is specialized. The NRK cells form a stable platform from which to screen drugs that affect volume regulation via mechanosensory channels and as a sensitive system to clone the channel.


Journal of Neurotrauma | 2015

A Threshold Shear Force for Calcium Influx in an Astrocyte Model of Traumatic Brain Injury

Mohammad Mehdi Maneshi; Frederick Sachs; Susan Z. Hua

Traumatic brain injury (TBI) refers to brain damage resulting from external mechanical force, such as a blast or crash. Our current understanding of TBI is derived mainly from in vivo studies that show measurable biological effects on neurons sampled after TBI. Little is known about the early responses of brain cells during stimuli and which features of the stimulus are most critical to cell injury. We generated defined shear stress in a microfluidic chamber using a fast pressure servo and examined the intracellular Ca(2+) levels in cultured adult astrocytes. Shear stress increased intracellular Ca(2+) depending on the magnitude, duration, and rise time of the stimulus. Square pulses with a fast rise time (∼2u2009ms) caused transient increases in intracellular Ca(2+), but when the rise time was extended to 20u2009ms, the response was much less. The threshold for a response is a matrix of multiple parameters. Cells can integrate the effect of shear force from repeated challenges: A pulse train of 10 narrow pulses (11.5u2009dyn/cm(2) and 10u2009ms wide) resulted in a 4-fold increase in Ca(2+) relative to a single pulse of the same amplitude 100u2009ms wide. The Ca(2+) increase was eliminated in Ca(2+)-free media, but was observed after depleting the intracellular Ca(2+) stores with thapsigargin suggesting the need for a Ca(2+) influx. The Ca(2+) influx was inhibited by extracellular Gd(3+), a nonspecific inhibitor of mechanosensitive ion channels, but it was not affected by the more specific inhibitor, GsMTx4. The voltage-gated channel blockers, nifedipine, diltiazem, and verapamil, were also ineffective. The data show that the mechanically induced Ca(2+) influx commonly associated with neuron models for TBI is also present in astrocytes, and there is a viscoelastic/plastic coupling of shear stress to the Ca(2+) influx. The site of Ca(2+) influx has yet to be determined.


Experimental Cell Research | 2014

Direct observation of α-actinin tension and recruitment at focal adhesions during contact growth.

Nannan Ye; Deepika Verma; Fanjie Meng; Michael W. Davidson; Kevin Suffoletto; Susan Z. Hua

Adherent cells interact with extracellular matrix via cell-substrate contacts at focal adhesions. The dynamic assembly and disassembly of focal adhesions enables cell attachment, migration and growth. While the influence of mechanical forces on the formation and growth of focal adhesions has been widely observed, the force loading on specific proteins at focal adhesion complex is not clear. By co-expressing force sensitive α-actinin FRET probes and fluorescence labeled paxillin in MDCK cells, we have simultaneously observed the time-dependent changes in tension in α-actinin and the dynamics of focal adhesion during cell migration. We show that increase in tension in α-actinin at the focal adhesion coincides with elongation of the adhesion in its growth phase. The enlargement of focal adhesion is through a force sensitive recruitment of α-actinin and paxillin to the adhesion sites. Changes in α-actinin tension and correlated relocation of α-actinin in an active adhesion also guide the growth direction of the adhesion. The results support the model that cytoskeletal tension is coupled to focal adhesion via the linking protein, α-actinin at the adhesion complex. Lysophosphatidic acid caused an immediate increase in α-actinin tension followed by drastic focal adhesion formation and elongation. Application of Rho-ROCK inhibitor, Y27632, resulted in reversible reduction in tension in α-actinin and disassociation of focal adhesion, suggesting the involvement of myosin-II mediated contractile force in the focal adhesion dynamics. These findings suggest that α-actinin not only serves as a physical linker between cytoskeleton and integrin, but also participates in force transmission at adhesion sites to facilitate adhesion׳s growth.


PLOS ONE | 2012

Interplay between Cytoskeletal Stresses and Cell Adaptation under Chronic Flow

Deepika Verma; Nannan Ye; Fanjie Meng; Frederick Sachs; Jason Rahimzadeh; Susan Z. Hua

Using stress sensitive FRET sensors we have measured cytoskeletal stresses in α-actinin and the associated reorganization of the actin cytoskeleton in cells subjected to chronic shear stress. We show that long-term shear stress reduces the average actinin stress and this effect is reversible with removal of flow. The flow-induced changes in cytoskeletal stresses are found to be dynamic, involving a transient decrease in stress (phase-I), a short-term increase (3–6 min) (Phase-II), followed by a longer-term decrease that reaches a minimum in ∼20 min (Phase-III), before saturating. These changes are accompanied by reorganization of the actin cytoskeleton from parallel F-actin bundles to peripheral bundles. Blocking mechanosensitive ion channels (MSCs) with Gd3+ and GsMTx4 (a specific inhibitor) eliminated the changes in cytoskeletal stress and the corresponding actin reorganization, indicating that Ca2+ permeable MSCs participate in the signaling cascades. This study shows that shear stress induced cell adaptation is mediated via MSCs.


Journal of Biomechanics | 2015

Intracellular forces during guided cell growth on micropatterns using FRET measurement

Kevin Suffoletto; Nannan Ye; Fanjie Meng; Deepika Verma; Susan Z. Hua

Interaction of cells with extracellular matrix (ECM) regulates cell shape, differentiation and polarity. This effect has been widely observed in cells grown on substrates with various patterned features, stiffness and surface chemistry. It has been postulated that mechanical confinement of cells by the substrate causes a redistribution of tension in cytoskeletal proteins resulting in cytoskeletal reorganization through force sensitive pathways. However, the mechanisms for force transduction during reorganization remain unclear. In this study, using FRET based force sensors we have measured tension in an actin cross-linking protein, α-actinin, and followed reorganization of actin cytoskeleton in real time in HEK cells grown on patterned substrates. We show that the patterned substrates cause a redistribution of tension in α-actinin that coincides with cytoskeleton reorganization. Higher tension was observed in portions of cells where they form bridges across inhibited regions of the patterned substrates; the attachment to the substrate is found to release tension. Real time measurements of α-actinin tension and F-actin arrangement show that an increase in tension coincides with formation of F-actin bundles at the cell periphery during cell-spreading across inhibited regions, suggesting that mechanical forces stimulate cytoskeleton enhancement. Rho-ROCK inhibitor (Y27632) causes reduction in actinin tension followed by retraction of bridged regions. Our results demonstrate that changes in cell shape and expansion over patterned surfaces is a force sensitive process that requires actomyosin contractile force involving Rho-ROCK pathway.


Cell Biochemistry and Biophysics | 2008

Dynamic Effects of Hg2+-induced Changes in Cell Volume

Jinseok Heo; Fanjie Meng; Frederick Sachs; Susan Z. Hua

Using a microfluidic volume sensor, we studied the dynamic effects of Hg2+ on hypotonic stress-induced volume changes in CHO cells. A hypotonic challenge to control cells caused them to swell but did not evoke a significant regulatory volume decrease (RVD). Treatment with 100xa0μM HgCl2 caused a substantial increase in the steady-state volume following osmotic stress. Continuous hypotonic challenge following a single 10-min exposure to HgCl2 produced a biphasic volume increase with a steady-state volume 100% larger than control cells. Repeated hypotonic challenges to cells exposed once to Hg2+ resulted in a sequential approach to the same steady-state volume. Stimulation after reaching steady state caused a reduction in peak cell volume. Repeated stimulation was different than continuous stimulation resulting in a more rapid approach to steady state. Substituting extracellular Na+ with impermeant NMDG+ in the hypotonic solution produced a rapid RVD-like volume decrease and eliminated the Hg2+-induced excess swelling. The volume decrease in the presence of Hg2+ was inhibited by tetraethylammonium and 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid disodium, blockers of K+ and Cl− channels, respectively, suggesting that part of the Hg2+ effect was increasing NaCl influx over KCl efflux. The presence of multiple phases of steady-state volume and their sensitivity to the stimulation history suggests that factors beyond solute fluxes, such as modification of mechanical stress within the cytoskeleton also plays a role in the response to hypotonic stress.


Biomicrofluidics | 2012

A microfluidic platform for measuring electrical activity across cells

Cédric Bathany; Derek L. Beahm; Steve Besch; Frederick Sachs; Susan Z. Hua

In this paper, we present a microfluidic chip that is capable of measuring electrical conductance through gap junction channels in a 2-dimensional cell sheet. The chip utilizes a tri-stream laminar flow to create a non-conductive sucrose gap between the two conducting solutions so that electrical current can pass across the sucrose gap only through the cells. Using the chip, we tested the effect of a gap junction inhibitor, 2-APB, on the electrical coupling of connexin 43 (Cx43) gap junction channels in NRK-49F cells. We found that 2-APB reversibly blocks the conductivity in a dose-dependent manner. The tri-stream chip further allows us to simultaneously follow the conductance changes and dye diffusion in real time. We show that 2-APB affects both conductance and diffusion, supporting the interpretation that both sets of data reflect the same gap junction activity. The chip provides a generic platform to investigate gap junction properties and to screen drugs that may inhibit or potentiate gap junction transmission.


Experimental Cell Research | 2017

Flow induced adherens junction remodeling driven by cytoskeletal forces

Deepika Verma; Vivek K. Bajpai; Nannan Ye; Mohammad Mehdi Maneshi; Deekshitha Jetta; Stelios T. Andreadis; Frederick Sachs; Susan Z. Hua

ABSTRACT Adherens junctions (AJs) are a key structural component for tissue organization and function. Under fluid shear stress, AJs exhibit dynamic assembly/disassembly, but how shear stress couples to AJs is unclear. In MDCK cells we measured simultaneously the forces in cytoskeletal &agr;‐actinin and the density and length of AJs using a genetically coded optical force sensor, actinin‐sstFRET, and fluorescently labeled E‐cadherin (E‐cad). We found that shear stress of 0.74 dyn/cm2 for 3 h significantly enhanced E‐cad expression at cell‐cell contacts and this phenomenon has two phases. The initial formation of segregated AJ plaques coincided with a decrease in cytoskeletal tension, but an increase in tension was necessary for expansion of the plaques and the formation of continuous AJs in the later phase. The changes in cytoskeletal tension and reorganization appear to be an upstream process in response to flow since it occurred in both wild type and dominant negative E‐cad cells. Disruption of F‐actin with a Rho‐ROCK inhibitor eliminated AJ growth under flow. These results delineate the shear stress transduction paths in cultured cells, which helps to understand pathology of a range of diseases that involve dysfunction of E‐cadherin. HIGHLIGHTSShear stresses are transmitted to AJs through redistribution of cytoskeletal forces.The initial formation of AJ plaques coincides with decrease in cytoskeletal tension.Increase in tension is necessary for the formation of continuous AJs.Changes in cytoskeletal tension and reorganization is an upstream process in cells’ response to flow.


Cellular Physiology and Biochemistry | 2011

Cholesterol Depletion Facilitates Recovery from Hypotonic Cell Swelling in CHO Cells

Gregory B. Kowalsky; Derek Beam; Myung Jin Oh; Frederick Sachs; Susan Z. Hua; Irena Levitan

The maintenance of cell volume homeostasis is critical for preventing pathological cell swelling that may lead to severe cellular dysfunction or cell death. Our earlier studies have shown that volume-regulated anion channels that play a major role in the regulation of cell volume are facilitated by a decrease in cellular cholesterol suggesting that cholesterol depletion should also facilitate regulatory volume decrease (RVD), the ability of cells to recover from hypotonic swelling. In this study, we test this hypothesis using a novel methodology developed to measure changes in cell volume using a microfluidics chamber. Our data show that cholesterol depletion of Chinese Hamster Ovary (CHO) significantly facilitates the recovery process, as is apparent from a faster onset of the RVD (162±10 s. vs. 114±5 s. in control and cholesterol depleted cells respectively) and a higher degree of volume recovery after 10 min of the hypotonic challenge (41%±6% vs. 65%±6% in control and cholesterol depleted cells respectively). In contrast, enriching cells with cholesterol had no effect on the RVD process. We also show here that similarly to our previous observations in endothelial cells, cholesterol depletion significantly increases the stiffness of CHO cells suggesting that facilitation of RVD may be associated with cell stiffening. Furthermore, we also show that increasing cell stiffness by stabilizing F-actin with jasplakinolide also facilitates RVD development. We propose that cell stiffening enhances cell mechano-sensitivity, which in turn facilitates the RVD process.

Collaboration


Dive into the Susan Z. Hua's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nannan Ye

University at Buffalo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge