Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fanxin Long is active.

Publication


Featured researches published by Fanxin Long.


Development | 2004

Sequential roles of Hedgehog and Wnt signaling in osteoblast development

Hongliang Hu; Matthew J. Hilton; Xiaolin Tu; Kai Yu; David M. Ornitz; Fanxin Long

Signals that govern development of the osteoblast lineage are not well understood. Indian hedgehog (Ihh), a member of the hedgehog (Hh) family of proteins, is essential for osteogenesis in the endochondral skeleton during embryogenesis. The canonical pathway of Wnt signaling has been implicated by studies of Lrp5, a co-receptor for Wnt proteins, in postnatal bone mass homeostasis. In the present study we demonstrate that β-catenin, a central player in the canonical Wnt pathway, is indispensable for osteoblast differentiation in the mouse embryo. Moreover, we present evidence that Wnt signaling functions downstream of Ihh in development of the osteoblast lineage. Finally Wnt7b is identified as a potential endogenous ligand regulating osteogenesis. These data support a model that integrates Hh and Wnt signaling in the regulation of osteoblast development.


Nature Medicine | 2008

Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation

Matthew J. Hilton; Xiaolin Tu; Ximei Wu; Shuting Bai; Haibo Zhao; Tatsuya Kobayashi; Henry M. Kronenberg; Steven L. Teitelbaum; F. Patrick Ross; Raphael Kopan; Fanxin Long

Postnatal bone marrow houses mesenchymal progenitor cells that are osteoblast precursors. These cells have established therapeutic potential, but they are difficult to maintain and expand in vitro, presumably because little is known about the mechanisms controlling their fate decisions. To investigate the potential role of Notch signaling in osteoblastogenesis, we used conditional alleles to genetically remove components of the Notch signaling system during skeletal development. We found that disruption of Notch signaling in the limb skeletogenic mesenchyme markedly increased trabecular bone mass in adolescent mice. Notably, mesenchymal progenitors were undetectable in the bone marrow of mice with high bone mass. As a result, these mice developed severe osteopenia as they aged. Moreover, Notch signaling seemed to inhibit osteoblast differentiation through Hes or Hey proteins, which diminished Runx2 transcriptional activity via physical interaction. These results support a model wherein Notch signaling in bone marrow normally acts to maintain a pool of mesenchymal progenitors by suppressing osteoblast differentiation. Thus, mesenchymal progenitors may be expanded in vitro by activating the Notch pathway, whereas bone formation in vivo may be enhanced by transiently suppressing this pathway.


Cell | 2008

Rac1 Activation Controls Nuclear Localization of β-catenin during Canonical Wnt Signaling

Ximei Wu; Xiaolin Tu; Kyu Sang Joeng; Matthew J. Hilton; David A. Williams; Fanxin Long

Canonical Wnt signaling critically regulates cell fate and proliferation in development and disease. Nuclear localization of beta-catenin is indispensable for canonical Wnt signaling; however, the mechanisms governing beta-catenin nuclear localization are not well understood. Here we demonstrate that nuclear accumulation of beta-catenin in response to Wnt requires Rac1 activation. The role of Rac1 depends on phosphorylation of beta-catenin at Ser191 and Ser605, which is mediated by JNK2 kinase. Mutations of these residues significantly affect Wnt-induced beta-catenin nuclear accumulation. Genetic ablation of Rac1 in the mouse embryonic limb bud ectoderm disrupts canonical Wnt signaling and phenocopies deletion of beta-catenin in causing severe truncations of the limb. Finally, Rac1 interacts genetically with beta-catenin and Dkk1 in controlling limb outgrowth. Together these results uncover Rac1 activation and subsequent beta-catenin phosphorylation as a hitherto uncharacterized mechanism controlling canonical Wnt signaling and may provide additional targets for therapeutic intervention of this important pathway.


Development | 2004

Ihh signaling is directly required for the osteoblast lineage in the endochondral skeleton

Fanxin Long; Ung-il Chung; Shinsuke Ohba; Jill A. McMahon; Henry M. Kronenberg; Andrew P. McMahon

Indian hedgehog (Ihh) is indispensable for development of the osteoblast lineage in the endochondral skeleton. In order to determine whether Ihh is directly required for osteoblast differentiation, we have genetically manipulated smoothened (Smo), which encodes a transmembrane protein that is essential for transducing all Hedgehog (Hh) signals. Removal of Smo from perichondrial cells by the Cre-LoxP approach prevents formation of a normal bone collar and also abolishes development of the primary spongiosa. Analysis of chimeric embryos composed of wild-type and Smon/n cells indicates that Smon/n cells fail to contribute to osteoblasts in either the bone collar or the primary spongiosa but generate ectopic chondrocytes. In order to assess whether Ihh is sufficient to induce bone formation in vivo, we have analyzed the bone collar in the long bones of embryos in which Ihh was artificially expressed in all chondrocytes by the UAS-GAL4 bigenic system. Although ectopic Ihh does not induce overt ossification along the entire cartilage anlage, it promotes progression of the bone collar toward the epiphysis, suggesting a synergistic effect between ectopic Ihh and endogenous factors such as the bone morphogenetic proteins (BMPs). In keeping with this model, Hh signaling is further found to be required in BMP-induced osteogenesis in cultures of a limb-bud cell line. Taken together, these results demonstrate that Ihh signaling is directly required for the osteoblast lineage in the developing long bones and that Ihh functions in conjunction with other factors such as BMPs to induce osteoblast differentiation. We suggest that Ihh acts in vivo on a potential progenitor cell to promote osteoblast and prevent chondrocyte differentiation.


Cold Spring Harbor Perspectives in Biology | 2013

Development of the Endochondral Skeleton

Fanxin Long; David M. Ornitz

Much of the mammalian skeleton is composed of bones that originate from cartilage templates through endochondral ossification. Elucidating the mechanisms that control endochondral bone development is critical for understanding human skeletal diseases, injury response, and aging. Mouse genetic studies in the past 15 years have provided unprecedented insights about molecules regulating chondrocyte formation, chondrocyte maturation, and osteoblast differentiation, all key processes of endochondral bone development. These include the roles of the secreted proteins IHH, PTHrP, BMPs, WNTs, and FGFs, their receptors, and transcription factors such as SOX9, RUNX2, and OSX, in regulating chondrocyte and osteoblast biology. This review aims to integrate the known functions of extracellular signals and transcription factors that regulate development of the endochondral skeleton.


Blood | 2009

Suppression of CXCL12 production by bone marrow osteoblasts is a common and critical pathway for cytokine-induced mobilization

Matthew J. Christopher; Fulu Liu; Matthew J. Hilton; Fanxin Long; Daniel C. Link

Current evidence suggests that hematopoietic stem/progenitor cell (HSPC) mobilization by granulocyte colony-stimulating factor (G-CSF) is mediated by induction of bone marrow proteases, attenuation of adhesion molecule function, and disruption of CXCL12/CXCR4 signaling in the bone marrow. The relative importance and extent to which these pathways overlap or function independently are uncertain. Despite evidence of protease activation in the bone marrow, HSPC mobilization by G-CSF or the chemokine Grobeta was abrogated in CXCR4(-/-) bone marrow chimeras. In contrast, HSPC mobilization by a VLA-4 antagonist was intact. To determine whether other mobilizing cytokines disrupt CXCR4 signaling, we characterized CXCR4 and CXCL12 expression after HSPC mobilization with Flt3 ligand (Flt3L) and stem cell factor (SCF). Indeed, treatment with Flt3L or SCF resulted in a marked decrease in CXCL12 expression in the bone marrow and a loss of surface expression of CXCR4 on HSPCs. RNA in situ and sorting experiments suggested that the decreased CXCL12 expression is secondary to a loss of osteoblast lineage cells. Collectively, these data suggest that disruption of CXCR4 signaling and attenuation of VLA-4 function are independent mechanisms of mobilization by G-CSF. Loss of CXCL12 expression by osteoblast appears to be a common and key step in cytokine-induced mobilization.


Journal of Biological Chemistry | 2008

NOTCH1 Regulates Osteoclastogenesis Directly in Osteoclast Precursors and Indirectly via Osteoblast Lineage Cells

Shuting Bai; Raphael Kopan; Wei Zou; Matthew J. Hilton; Chin-Tong Ong; Fanxin Long; F. Patrick Ross; Steven L. Teitelbaum

NOTCH signaling is a key regulator of cell fate decisions in prenatal skeletal development and is active during adult tissue renewal. In addition, its association with neoplasia suggests that it is a candidate therapeutic target. We find that attenuated NOTCH signaling enhances osteoclastogenesis and bone resorption in vitro and in vivo by a combination of molecular mechanisms. First, deletion of Notch1-3 in bone marrow macrophages directly promotes their commitment to the osteoclast phenotype. These osteoclast precursors proliferate more rapidly than the wild type in response to macrophage colony-stimulating factor and are sensitized to RANKL and macrophage colony-stimulating factor, undergoing enhanced differentiation in response to low doses of either cytokine. Conforming with a role for NOTCH in this process, presentation of the NOTCH ligand JAGGED1 blunts the capacity of wild-type bone marrow macrophages to become osteoclasts. Combined, these data establish that NOTCH suppresses osteoclastogenesis via ligand-mediated receptor activation. Although NOTCH1 and NOTCH3 collaborate in regulating osteoclast formation, NOTCH1 is the dominant paralog. In addition, NOTCH1 deficiency promotes osteoclastogenesis indirectly by enhancing the ability of osteoblast lineage cells to stimulate osteoclastogenesis. This is achieved by decreasing the osteoprotegerin/RANKL expression ratio. Thus, NOTCH1 acts as a net inhibitor of bone resorption, exerting its effect both directly in osteoclast precursors and indirectly via osteoblast lineage cells. These observations raise caution that therapeutic inhibition of NOTCH signaling may adversely accelerate bone loss in humans.


Development | 2005

Ihh controls cartilage development by antagonizing Gli3, but requires additional effectors to regulate osteoblast and vascular development

Matthew J. Hilton; Xiaolin Tu; Julie Cook; Hongliang Hu; Fanxin Long

Indian hedgehog (Ihh) controls multiple aspects of endochondral skeletal development, including proliferation and maturation of chondrocytes, osteoblast development and cartilage vascularization. Although it is known that Gli transcription factors are key effectors of hedgehog signaling, it has not been established which Gli protein mediates Ihh activity in skeletal development. Here, we show that removal of Gli3 in Ihh-null mouse embryos restored normal proliferation and maturation of chondrocytes, but only partially rescued the defects in osteoblast development and cartilage vascularization. Remarkably, in both Ihh-/- and Ihh-/-; Gli3-/- embryos, vascularization promoted osteoblast development in perichondrial progenitor cells. Our results not only establish Gli3 as a critical effector for Ihh activity in the developing skeleton, but also identify an osteogenic role for a vasculature-derived signal, which integrates with Ihh and Wnt signals to determine the osteoblast versus chondrocyte fate in the mesenchymal progenitors.


Cell Metabolism | 2013

WNT-LRP5 Signaling Induces Warburg Effect through mTORC2 Activation during Osteoblast Differentiation

Emel Esen; Jianquan Chen; Courtney M. Karner; Adewole L. Okunade; Bruce W. Patterson; Fanxin Long

WNT signaling controls many biological processes including cell differentiation in metazoans. However, how WNT reprograms cell identity is not well understood. We have investigated the potential role of cellular metabolism in WNT-induced osteoblast differentiation. WNT3A induces aerobic glycolysis known as Warburg effect by increasing the level of key glycolytic enzymes. The metabolic regulation requires LRP5 but not β-catenin and is mediated by mTORC2-AKT signaling downstream of RAC1. Suppressing WNT3A-induced metabolic enzymes impairs osteoblast differentiation in vitro. Deletion of Lrp5 in the mouse, which decreases postnatal bone mass, reduces mTORC2 activity and glycolytic enzymes in bone cells and lowers serum lactate levels. Conversely, mice expressing a mutant Lrp5 that causes high bone mass exhibit increased glycolysis in bone. Thus, WNT-LRP5 signaling promotes bone formation in part through direct reprogramming of glucose metabolism. Moreover, regulation of cellular metabolism may represent a general mechanism contributing to the wide-ranging functions of WNT proteins.


Developmental Biology | 2011

Lrp5 and Lrp6 redundantly control skeletal development in the mouse embryo.

Kyu Sang Joeng; Cassie A. Schumacher; Cassandra R. Zylstra-Diegel; Fanxin Long; Bart O. Williams

The role of Wnt signaling in osteoblastogenesis in the embryo remains to be fully established. Although β-catenin, a multifunctional protein also mediating canonical Wnt signaling, is indispensable for embryonic osteoblast differentiation, the roles of the key Wnt co-receptors Lrp5 and Lrp6 are unclear. Indeed, global deletion of either Lrp5 or Lrp6 did not overtly affect osteoblast differentiation in the mouse embryo. Here, we generated mice lacking both receptors specifically in the embryonic mesenchyme and observed an absence of osteoblasts in the embryo. In addition, the double-deficient embryos developed supernumerary cartilage elements in the zeugopod, revealing an important role for mesenchymal Lrp5/6 signaling in limb patterning. Importantly, the phenotypes of the Lrp5/6 mutant closely resembled those of the β-catenin-deficient embryos. These phenotypes are likely independent of any effect on the adherens junction, as deletion of α-catenin, another component of the complex, did not cause similar defects. Thus, Lrp5 and 6 redundantly control embryonic skeletal development, likely through β-catenin signaling.

Collaboration


Dive into the Fanxin Long's collaboration.

Top Co-Authors

Avatar

Xiaolin Tu

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jianquan Chen

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Kyu Sang Joeng

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Courtney M. Karner

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

David M. Ornitz

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Yu Shi

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Emel Esen

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Joohyun Lim

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Andrew P. McMahon

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge