Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew J. Hilton is active.

Publication


Featured researches published by Matthew J. Hilton.


Development | 2004

Sequential roles of Hedgehog and Wnt signaling in osteoblast development

Hongliang Hu; Matthew J. Hilton; Xiaolin Tu; Kai Yu; David M. Ornitz; Fanxin Long

Signals that govern development of the osteoblast lineage are not well understood. Indian hedgehog (Ihh), a member of the hedgehog (Hh) family of proteins, is essential for osteogenesis in the endochondral skeleton during embryogenesis. The canonical pathway of Wnt signaling has been implicated by studies of Lrp5, a co-receptor for Wnt proteins, in postnatal bone mass homeostasis. In the present study we demonstrate that β-catenin, a central player in the canonical Wnt pathway, is indispensable for osteoblast differentiation in the mouse embryo. Moreover, we present evidence that Wnt signaling functions downstream of Ihh in development of the osteoblast lineage. Finally Wnt7b is identified as a potential endogenous ligand regulating osteogenesis. These data support a model that integrates Hh and Wnt signaling in the regulation of osteoblast development.


Nature Medicine | 2008

Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation

Matthew J. Hilton; Xiaolin Tu; Ximei Wu; Shuting Bai; Haibo Zhao; Tatsuya Kobayashi; Henry M. Kronenberg; Steven L. Teitelbaum; F. Patrick Ross; Raphael Kopan; Fanxin Long

Postnatal bone marrow houses mesenchymal progenitor cells that are osteoblast precursors. These cells have established therapeutic potential, but they are difficult to maintain and expand in vitro, presumably because little is known about the mechanisms controlling their fate decisions. To investigate the potential role of Notch signaling in osteoblastogenesis, we used conditional alleles to genetically remove components of the Notch signaling system during skeletal development. We found that disruption of Notch signaling in the limb skeletogenic mesenchyme markedly increased trabecular bone mass in adolescent mice. Notably, mesenchymal progenitors were undetectable in the bone marrow of mice with high bone mass. As a result, these mice developed severe osteopenia as they aged. Moreover, Notch signaling seemed to inhibit osteoblast differentiation through Hes or Hey proteins, which diminished Runx2 transcriptional activity via physical interaction. These results support a model wherein Notch signaling in bone marrow normally acts to maintain a pool of mesenchymal progenitors by suppressing osteoblast differentiation. Thus, mesenchymal progenitors may be expanded in vitro by activating the Notch pathway, whereas bone formation in vivo may be enhanced by transiently suppressing this pathway.


Cell | 2008

Rac1 Activation Controls Nuclear Localization of β-catenin during Canonical Wnt Signaling

Ximei Wu; Xiaolin Tu; Kyu Sang Joeng; Matthew J. Hilton; David A. Williams; Fanxin Long

Canonical Wnt signaling critically regulates cell fate and proliferation in development and disease. Nuclear localization of beta-catenin is indispensable for canonical Wnt signaling; however, the mechanisms governing beta-catenin nuclear localization are not well understood. Here we demonstrate that nuclear accumulation of beta-catenin in response to Wnt requires Rac1 activation. The role of Rac1 depends on phosphorylation of beta-catenin at Ser191 and Ser605, which is mediated by JNK2 kinase. Mutations of these residues significantly affect Wnt-induced beta-catenin nuclear accumulation. Genetic ablation of Rac1 in the mouse embryonic limb bud ectoderm disrupts canonical Wnt signaling and phenocopies deletion of beta-catenin in causing severe truncations of the limb. Finally, Rac1 interacts genetically with beta-catenin and Dkk1 in controlling limb outgrowth. Together these results uncover Rac1 activation and subsequent beta-catenin phosphorylation as a hitherto uncharacterized mechanism controlling canonical Wnt signaling and may provide additional targets for therapeutic intervention of this important pathway.


Blood | 2009

Suppression of CXCL12 production by bone marrow osteoblasts is a common and critical pathway for cytokine-induced mobilization

Matthew J. Christopher; Fulu Liu; Matthew J. Hilton; Fanxin Long; Daniel C. Link

Current evidence suggests that hematopoietic stem/progenitor cell (HSPC) mobilization by granulocyte colony-stimulating factor (G-CSF) is mediated by induction of bone marrow proteases, attenuation of adhesion molecule function, and disruption of CXCL12/CXCR4 signaling in the bone marrow. The relative importance and extent to which these pathways overlap or function independently are uncertain. Despite evidence of protease activation in the bone marrow, HSPC mobilization by G-CSF or the chemokine Grobeta was abrogated in CXCR4(-/-) bone marrow chimeras. In contrast, HSPC mobilization by a VLA-4 antagonist was intact. To determine whether other mobilizing cytokines disrupt CXCR4 signaling, we characterized CXCR4 and CXCL12 expression after HSPC mobilization with Flt3 ligand (Flt3L) and stem cell factor (SCF). Indeed, treatment with Flt3L or SCF resulted in a marked decrease in CXCL12 expression in the bone marrow and a loss of surface expression of CXCR4 on HSPCs. RNA in situ and sorting experiments suggested that the decreased CXCL12 expression is secondary to a loss of osteoblast lineage cells. Collectively, these data suggest that disruption of CXCR4 signaling and attenuation of VLA-4 function are independent mechanisms of mobilization by G-CSF. Loss of CXCL12 expression by osteoblast appears to be a common and key step in cytokine-induced mobilization.


Journal of Clinical Investigation | 2008

Regulation of chondrogenesis and chondrocyte differentiation by stress

Michael J. Zuscik; Matthew J. Hilton; Xinping Zhang; Di Chen; Regis J. O’Keefe

Chondrogenesis and endochondral ossification are the cartilage differentiation processes that lead to skeletal formation and growth in the developing vertebrate as well as skeletal repair in the adult. The exquisite regulation of these processes, both in normal development and in pathologic situations, is impacted by a number of different types of stress. These include normal stressors such as mechanical loading and hypoxia as well pathologic stressors such as injury and/or inflammation and environmental toxins. This article provides an overview of the processes of chondrogenesis and endochondral ossification and their control at the molecular level. A summary of the influence of the most well-understood normal and pathologic stressors on the differentiation program is also presented.


Journal of Biological Chemistry | 2008

NOTCH1 Regulates Osteoclastogenesis Directly in Osteoclast Precursors and Indirectly via Osteoblast Lineage Cells

Shuting Bai; Raphael Kopan; Wei Zou; Matthew J. Hilton; Chin-Tong Ong; Fanxin Long; F. Patrick Ross; Steven L. Teitelbaum

NOTCH signaling is a key regulator of cell fate decisions in prenatal skeletal development and is active during adult tissue renewal. In addition, its association with neoplasia suggests that it is a candidate therapeutic target. We find that attenuated NOTCH signaling enhances osteoclastogenesis and bone resorption in vitro and in vivo by a combination of molecular mechanisms. First, deletion of Notch1-3 in bone marrow macrophages directly promotes their commitment to the osteoclast phenotype. These osteoclast precursors proliferate more rapidly than the wild type in response to macrophage colony-stimulating factor and are sensitized to RANKL and macrophage colony-stimulating factor, undergoing enhanced differentiation in response to low doses of either cytokine. Conforming with a role for NOTCH in this process, presentation of the NOTCH ligand JAGGED1 blunts the capacity of wild-type bone marrow macrophages to become osteoclasts. Combined, these data establish that NOTCH suppresses osteoclastogenesis via ligand-mediated receptor activation. Although NOTCH1 and NOTCH3 collaborate in regulating osteoclast formation, NOTCH1 is the dominant paralog. In addition, NOTCH1 deficiency promotes osteoclastogenesis indirectly by enhancing the ability of osteoblast lineage cells to stimulate osteoclastogenesis. This is achieved by decreasing the osteoprotegerin/RANKL expression ratio. Thus, NOTCH1 acts as a net inhibitor of bone resorption, exerting its effect both directly in osteoclast precursors and indirectly via osteoblast lineage cells. These observations raise caution that therapeutic inhibition of NOTCH signaling may adversely accelerate bone loss in humans.


Development | 2005

Ihh controls cartilage development by antagonizing Gli3, but requires additional effectors to regulate osteoblast and vascular development

Matthew J. Hilton; Xiaolin Tu; Julie Cook; Hongliang Hu; Fanxin Long

Indian hedgehog (Ihh) controls multiple aspects of endochondral skeletal development, including proliferation and maturation of chondrocytes, osteoblast development and cartilage vascularization. Although it is known that Gli transcription factors are key effectors of hedgehog signaling, it has not been established which Gli protein mediates Ihh activity in skeletal development. Here, we show that removal of Gli3 in Ihh-null mouse embryos restored normal proliferation and maturation of chondrocytes, but only partially rescued the defects in osteoblast development and cartilage vascularization. Remarkably, in both Ihh-/- and Ihh-/-; Gli3-/- embryos, vascularization promoted osteoblast development in perichondrial progenitor cells. Our results not only establish Gli3 as a critical effector for Ihh activity in the developing skeleton, but also identify an osteogenic role for a vasculature-derived signal, which integrates with Ihh and Wnt signals to determine the osteoblast versus chondrocyte fate in the mesenchymal progenitors.


Journal of Cell Science | 2011

BMP2, but not BMP4, is crucial for chondrocyte proliferation and maturation during endochondral bone development

Bing Shu; Ming Zhang; Rong Xie; Meina Wang; Hongting Jin; Wei Hou; Dezhi Tang; Stephen E. Harris; Yuji Mishina; Regis J. O'Keefe; Matthew J. Hilton; Yong-Jun Wang; Di Chen

The BMP signaling pathway has a crucial role in chondrocyte proliferation and maturation during endochondral bone development. To investigate the specific function of the Bmp2 and Bmp4 genes in growth plate chondrocytes during cartilage development, we generated chondrocyte-specific Bmp2 and Bmp4 conditional knockout (cKO) mice and Bmp2,Bmp4 double knockout (dKO) mice. We found that deletion of Bmp2 and Bmp4 genes or the Bmp2 gene alone results in a severe chondrodysplasia phenotype, whereas deletion of the Bmp4 gene alone produces a minor cartilage phenotype. Both dKO and Bmp2 cKO mice exhibit severe disorganization of chondrocytes within the growth plate region and display profound defects in chondrocyte proliferation, differentiation and apoptosis. To understand the mechanism by which BMP2 regulates these processes, we explored the specific relationship between BMP2 and Runx2, a key regulator of chondrocyte differentiation. We found that BMP2 induces Runx2 expression at both the transcriptional and post-transcriptional levels. BMP2 enhances Runx2 protein levels through inhibition of CDK4 and subsequent prevention of Runx2 ubiquitylation and proteasomal degradation. Our studies provide novel insights into the genetic control and molecular mechanism of BMP signaling during cartilage development.


Development | 2010

RBPjκ-dependent Notch signaling regulates mesenchymal progenitor cell proliferation and differentiation during skeletal development

Yufeng Dong; Alana M. Jesse; Anat Kohn; Lea M. Gunnell; Tasuku Honjo; Michael J. Zuscik; Regis J. O'Keefe; Matthew J. Hilton

The Notch pathway has recently been implicated in mesenchymal progenitor cell (MPC) differentiation from bone marrow-derived progenitors. However, whether Notch regulates MPC differentiation in an RBPjκ-dependent manner, specifies a particular MPC cell fate, regulates MPC proliferation and differentiation during early skeletal development or controls specific Notch target genes to regulate these processes remains unclear. To determine the exact role and mode of action for the Notch pathway in MPCs during skeletal development, we analyzed tissue-specific loss-of-function (Prx1Cre; Rbpjkf/f), gain-of-function (Prx1Cre; Rosa-NICDf/+) and RBPjκ-independent Notch gain-of-function (Prx1Cre; Rosa-NICDf/+; Rbpjkf/f) mice for defects in MPC proliferation and differentiation. These data demonstrate for the first time that the RBPjκ-dependent Notch signaling pathway is a crucial regulator of MPC proliferation and differentiation during skeletal development. Our study also implicates the Notch pathway as a general suppressor of MPC differentiation that does not bias lineage allocation. Finally, Hes1 was identified as an RBPjκ-dependent Notch target gene important for MPC maintenance and the suppression of in vitro chondrogenesis.


Developmental Biology | 2008

An FGF-WNT gene regulatory network controls lung mesenchyme development

Yongjun Yin; Andrew C. White; Sung Ho Huh; Matthew J. Hilton; Hidemi Kanazawa; Fanxin Long; David M. Ornitz

Lung mesenchyme is a critical determinant of the shape and size of the lung, the extent and patterning of epithelial branching, and the formation of the pulmonary vasculature and interstitial mesenchymal components of the adult lung. Fibroblast growth factor 9 (FGF9) is a critical regulator of lung mesenchymal growth; however, upstream mechanisms that modulate the FGF mesenchymal signal and the downstream targets of mesenchymal FGF signaling are poorly understood. Here we have identified a robust regulatory network in which mesenchymal FGF signaling regulates beta-Catenin mediated WNT signaling in lung mesenchyme. By conditionally inactivating beta-Catenin in lung mesenchyme, we show that mesenchymal WNT-beta-Catenin signaling is essential for lung development and acts to regulate the cell cycle G1 to S transition and the FGF responsiveness of mesenchyme. Together, both FGF and WNT signaling pathways function to sustain mesenchymal growth and coordinate epithelial morphogenesis during the pseudoglandular stage of lung development.

Collaboration


Dive into the Matthew J. Hilton's collaboration.

Top Co-Authors

Avatar

Michael J. Zuscik

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Regis J. O'Keefe

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Anthony J. Mirando

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Fanxin Long

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Hani A. Awad

University of Rochester

View shared research outputs
Top Co-Authors

Avatar

Robert A. Mooney

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer H. Jonason

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Zhaoyang Liu

University of Rochester

View shared research outputs
Top Co-Authors

Avatar

Di Chen

Rush University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge