Farah Ahmed
Natural History Museum
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Farah Ahmed.
Scientific Reports | 2016
Dylan B. Smith; Galina Bernhardt; Nigel E. Raine; Richard L. Abel; Dan Sykes; Farah Ahmed; Inti Pedroso; Richard J. Gill
The capacity to explore soft tissue structures in detail is important in understanding animal physiology and how this determines features such as movement, behaviour and the impact of trauma on regular function. Here we use advances in micro-computed tomography (micro-CT) technology to explore the brain of an important insect pollinator and model organism, the bumblebee (Bombus terrestris). Here we present a method for accurate imaging and exploration of insect brains that keeps brain tissue free from trauma and in its natural stereo-geometry, and showcase our 3D reconstructions and analyses of 19 individual brains at high resolution. Development of this protocol allows relatively rapid and cost effective brain reconstructions, making it an accessible methodology to the wider scientific community. The protocol describes the necessary steps for sample preparation, tissue staining, micro-CT scanning and 3D reconstruction, followed by a method for image analysis using the freeware SPIERS. These image analysis methods describe how to virtually extract key composite structures from the insect brain, and we demonstrate the application and precision of this method by calculating structural volumes and investigating the allometric relationships between bumblebee brain structures.
Journal of Biomechanics | 2015
Chamaiporn Sukjamsri; Diogo M. Geraldes; Thomas Gregory; Farah Ahmed; David Hollis; Samuel Schenk; Andrew A. Amis; Roger Emery; Ulrich Hansen
Micromotion around implants is commonly measured using displacement-sensor techniques. Due to the limitations of these techniques, an alternative approach (DVC-μCT) using digital volume correlation (DVC) and micro-CT (μCT) was developed in this study. The validation consisted of evaluating DVC-μCT based micromotion against known micromotions (40, 100 and 150 μm) in a simplified experiment. Subsequently, a more clinically realistic experiment in which a glenoid component was implanted into a porcine scapula was carried out and the DVC-μCT measurements during a single load cycle (duration 20 min due to scanning time) was correlated with the manual tracking of micromotion at 12 discrete points across the implant interface. In this same experiment the full-field DVC-μCT micromotion was compared to the full-field micromotion predicted by a parallel finite element analysis (FEA). It was found that DVC-μCT micromotion matched the known micromotion of the simplified experiment (average/peak error=1.4/1.7 μm, regression line slope=0.999) and correlated with the micromotion at the 12 points tracked manually during the realistic experiment (R(2)=0.96). The DVC-μCT full-field micromotion matched the pattern of the full-field FEA predicted micromotion. This study showed that the DVC-μCT technique provides sensible estimates of micromotion. The main advantages of this technique are that it does not damage important parts of the specimen to gain access to the bone-implant interface, and it provides a full-field evaluation of micromotion as opposed to the micromotion at just a few discrete points. In conclusion the DVC-μCT technique provides a useful tool for investigations of micromotion around plastic implants.
Frontiers in Marine Science | 2015
Diva J. Amon; Daniel Sykes; Farah Ahmed; Jonathan T. Copley; Kirsty M. Kemp; Paul A. Tyler; Craig M. Young; Adrian G. Glover
Wood sinking into the deep sea is often colonized by species of the bivalve subfamily Xylophagaidae; specialist organisms that bore into it and digest cellulose with the aid of symbiotic bacteria. Very little is known about the nature of Xylophagaidae borings, Xylophagaidae abundances and population size structures, their rates of growth and their consumption rates of wood. To investigate this, several sets of experimental wood packages were deployed and retrieved: two sets from two seamount sites on the Southwest Indian Ridge (732-750 m), one from the Mid-Cayman Spreading Centre in the Caribbean (4773 m), and three sets from 500 m in the Tongue of the Ocean, Bahamas. The wood samples were scanned using X-ray micro-computed tomography (micro-CT). The wood at each deployment site was colonized by a different species of xylophagaid. Making novel use of micro-CT images, the morphology of intact xylophagaid borings were shown to resemble Prince Rupert’s Drops with ‘drop lengths’ varying between species. Mean sizes of Xylophagaidae and mean minimum growth rates (2.55 to 8.76 mm yr-1) varied among species also. Rates of wood degradation were up to 60 cm3 per year per 100 individuals but in reality, this may have been an underestimate. This analysis has given insight into the importance of the subfamily Xylophagaidae with regard to wood remineralization in the deep sea.
BMC Plant Biology | 2015
Nicholas J. B. Brereton; Farah Ahmed; Daniel Sykes; Michael J. Ray; I. Shield; A. Karp; Richard J. Murphy
BackgroundVariation in the reaction wood (RW) response has been shown to be a principle component driving differences in lignocellulosic sugar yield from the bioenergy crop willow. The phenotypic cause(s) behind these differences in sugar yield, beyond their common elicitor, however, remain unclear. Here we use X-ray micro-computed tomography (μCT) to investigate RW-associated alterations in secondary xylem tissue patterning in three dimensions (3D).ResultsMajor architectural alterations were successfully quantified in 3D and attributed to RW induction. Whilst the frequency of vessels was reduced in tension wood tissue (TW), the total vessel volume was significantly increased. Interestingly, a delay in programmed-cell-death (PCD) associated with TW was also clearly observed and readily quantified by μCT.ConclusionsThe surprising degree to which the volume of vessels was increased illustrates the substantial xylem tissue remodelling involved in reaction wood formation. The remodelling suggests an important physiological compromise between structural and hydraulic architecture necessary for extensive alteration of biomass and helps to demonstrate the power of improving our perspective of cell and tissue architecture. The precise observation of xylem tissue development and quantification of the extent of delay in PCD provides a valuable and exciting insight into this bioenergy crop trait.
Frontiers in Endocrinology | 2015
Frank Acquaah; Katharine A Robson Brown; Farah Ahmed; Nathan Jeffery; Richard L. Abel
Early bone development may have a significant impact upon bone health in adulthood. Bone mineral density (BMD) and bone mass are important determinants of adult bone strength. However, several studies have shown that BMD and bone mass decrease after birth. If early development is important for strength, why does this reduction occur? To investigate this, more data characterizing gestational, infant, and childhood bone development are needed in order to compare with adults. The aim of this study is to document early vertebral trabecular bone development, a key fragility fracture site, and infer whether this period is important for adult bone mass and structure. A series of 120 vertebrae aged between 6 months gestation and 2.5 years were visualized using microcomputed tomography. Spherical volumes of interest were defined, thresholded, and measured using 3D bone analysis software (BoneJ, Quant3D). The findings showed that gestation was characterized by increasing bone volume fraction whilst infancy was defined by significant bone loss (≈2/3rds) and the appearance of a highly anisotropic trabecular structure with a predominantly inferior–superior direction. Childhood development progressed via selective thickening of some trabeculae and the loss of others; maintaining bone volume whilst creating a more anisotropic structure. Overall, the pattern of vertebral development is one of gestational overproduction followed by infant “sculpting” of bone tissue during the first year of life (perhaps in order to regulate mineral homeostasis or to adapt to loading environment) and then subsequent refinement during early childhood. Comparison of early bone developmental data in this study with adult bone volume values taken from the literature shows that the loss in bone mass that occurs during the first year of life is never fully recovered. Early development could therefore be important for developing bone strength, but through structural changes in trabecular microarchitecture rather than bone mass.
Medical and Veterinary Entomology | 2018
Daniel Martín-Vega; Amin Garbout; Farah Ahmed; L. M. Ferrer; J. Lucientes; Douglas D. Colwell; M. J. R. Hall
Oestrid flies (Diptera: Oestridae) do not feed during the adult stage as they acquire all necessary nutrients during the parasitic larval stage. The adult mouthparts and digestive tract are therefore frequently vestigial; however, morphological data on the alimentary canal in adult oestrid flies are scarce and a proper visualization of this organ system within the adult body is lacking. The present work visualizes the morphology of the alimentary canal in adults of two oestrid species, Oestrus ovis L. and Hypoderma lineatum (de Villiers), with the use of non‐invasive micro‐computed tomography (micro‐CT) and compares it with the highly developed alimentary canal of the blow fly Calliphora vicina Robineau‐Desvoidy (Diptera: Calliphoridae). Both O. ovis and H. lineatum adults showed significant reductions of the cardia and the diameter of the digestive tract, an absence of the helicoidal portion of the midgut typical of other cyclorrhaphous flies, and a lack of crop and salivary glands. Given the current interest in the alimentary canal in adult dipterans in biomedical and developmental biology studies, further understanding of the morphology and development of this organ system in adult oestrids may provide valuable new insights in several areas of research.
Zootaxa | 2014
Mark Wilkinson; Philippe J. R. Kok; Farah Ahmed; David J. Gower
According to current understanding, five lineages of amphibians, but no other tetrapods, are secondarily lungless and are believed to rely exclusively on cutaneous gas exchange. One explanation of the evolutionary loss of lungs interprets lunglessness as an adaptation to reduce buoyancy in fast-flowing aquatic environments, reasoning that excessive buoyancy in such an environment would cause organisms being swept away. While not uncontroversial, this hypothesis provides a plausible potential explanation of the evolution of lunglessness in four of the five lungless amphibian lineages. The exception is the most recently reported lungless lineage, the newly described Guyanan caecilian genus and species Caecilita iwokramae Wake & Donnelly, 2010, which is inconsistent with the reduced disadvantageous buoyancy hypothesis by virtue of it seemingly being terrestrial and having a terrestrial ancestry. Re-examination of the previously only known specimen of C. iwokramae and of recently collected additional material reveal that this species possesses a reasonably well-developed right lung and is a species of the pre-existing caecilian genus Microcaecilia Taylor, 1968. We therefore place Caecilita in the synonymy of Microcaecilia, and re-evaluate the plausibility of the reduced disadvantageous buoyancy hypothesis as a general explanation of the evolution of lunglessness.
Scientific Reports | 2018
Daniel Martín-Vega; Amin Garbout; Farah Ahmed; Martina Wicklein; Cameron P. Goater; Douglas D. Colwell; M. J. R. Hall
Some parasites are able to manipulate the behaviour of their hosts to their own advantage. One of the most well-established textbook examples of host manipulation is that of the trematode Dicrocoelium dendriticum on ants, its second intermediate host. Infected ants harbour encysted metacercariae in the gaster and a non-encysted metacercaria in the suboesophageal ganglion (SOG); however, the mechanisms that D. dendriticum uses to manipulate the ant behaviour remain unknown, partly because of a lack of a proper and direct visualisation of the physical interface between the parasite and the ant brain tissue. Here we provide new insights into the potential mechanisms that this iconic manipulator uses to alter its host’s behaviour by characterising the interface between D. dendriticum and the ant tissues with the use of non-invasive micro-CT scanning. For the first time, we show that there is a physical contact between the parasite and the ant brain tissue at the anteriormost part of the SOG, including in a case of multiple brain infection where only the parasite lodged in the most anterior part of the SOG was in contact with the ant brain tissue. We demonstrate the potential of micro-CT to further understand other parasite/host systems in parasitological research.
Biodiversity Information Science and Standards | 2018
Douglas Russell; Arianna Bernucci; Amy Scott-Murray; Duncan E. Jackson; Farah Ahmed; Amin Garbout; Tim R. Birkhead
© Russell D et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Archive | 2013
C. L. Smith; Farah Ahmed; Daniel Sykes; Hilde Schroeven-Deceuninck