Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Farah D. Lubin is active.

Publication


Featured researches published by Farah D. Lubin.


Biological Psychiatry | 2009

LASTING EPIGENETIC INFLUENCE OF EARLY-LIFE ADVERSITY ON THE BDNF GENE

Tania L. Roth; Farah D. Lubin; Adam J. Funk; J. David Sweatt

BACKGROUND Childhood maltreatment and early trauma leave lasting imprints on neural mechanisms of cognition and emotion. With a rat model of infant maltreatment by a caregiver, we investigated whether early-life adversity leaves lasting epigenetic marks at the brain-derived neurotrophic factor (BDNF) gene in the central nervous system. METHODS During the first postnatal week, we exposed infant rats to stressed caretakers that predominately displayed abusive behaviors. We then assessed DNA methylation patterns and gene expression throughout the life span as well as DNA methylation patterns in the next generation of infants. RESULTS Early maltreatment produced persisting changes in methylation of BDNF DNA that caused altered BDNF gene expression in the adult prefrontal cortex. Furthermore, we observed altered BDNF DNA methylation in offspring of females that had previously experienced the maltreatment regimen. CONCLUSIONS These results highlight an epigenetic molecular mechanism potentially underlying lifelong and transgenerational perpetuation of changes in gene expression and behavior incited by early abuse and neglect.


The Journal of Neuroscience | 2008

EPIGENETIC REGULATION OF BDNF GENE TRANSCRIPTION IN THE CONSOLIDATION OF FEAR MEMORY

Farah D. Lubin; Tania L. Roth; J. David Sweatt

Long-term memory formation requires selective changes in gene expression. Here, we determined the contribution of chromatin remodeling to learning-induced changes in brain-derived neurotrophic factor (bdnf) gene expression in the adult hippocampus. Contextual fear learning induced differential regulation of exon-specific bdnf mRNAs (I, IV, VI, IX) that was associated with changes in bdnf DNA methylation and altered local chromatin structure. Infusions of zebularine (a DNA methyltransferase inhibitor) significantly altered bdnf DNA methylation and triggered changes in exon-specific bdnf mRNA levels, indicating that altered DNA methylation is sufficient to drive differential bdnf transcript regulation in the hippocampus. In addition, NMDA receptor blockade prevented memory-associated alterations in bdnf DNA methylation, resulting in a block of altered bdnf gene expression in hippocampus and a deficit in memory formation. These results suggest epigenetic modification of the bdnf gene as a mechanism for isoform-specific gene readout during memory consolidation.


Journal of Biological Chemistry | 2006

Evidence That DNA (Cytosine-5) Methyltransferase Regulates Synaptic Plasticity in the Hippocampus

Jonathan M. Levenson; Tania L. Roth; Farah D. Lubin; Courtney A. Miller; I-Chia Huang; Priyanka Desai; Lauren Malone; J. David Sweatt

DNA (cytosine-5) methylation represents one of the most widely used mechanisms of enduring cellular memory. Stable patterns of DNA methylation are established during development, resulting in creation of persisting cellular phenotypes. There is growing evidence that the nervous system has co-opted a number of cellular mechanisms used during development to subserve the formation of long term memory. In this study, we examined the role DNA (cytosine-5) methyltransferase (DNMT) activity might play in regulating the induction of synaptic plasticity. We found that the DNA within promoters for reelin and brain-derived neurotrophic factor, genes implicated in the induction of synaptic plasticity in the adult hippocampus, exhibited rapid and dramatic changes in cytosine methylation when DNMT activity was inhibited. Moreover, zebularine and 5-aza-2-deoxycytidine, inhibitors of DNMT activity, blocked the induction of long term potentiation at Schaffer collateral synapses. Activation of protein kinase C in the hippocampus decreased reelin promoter methylation and increased DNMT3A gene expression. Interestingly, DNMT activity is required for protein kinase C-induced increases in histone H3 acetylation. Considered together, these results suggest that DNMT activity is dynamically regulated in the adult nervous system and that DNMT may play a role in regulating the induction of synaptic plasticity in the mature CNS.


The Journal of Neuroscience | 2010

Histone Methylation Regulates Memory Formation

Swati Gupta; Se Y. Kim; Sonja Artis; David L. Molfese; Armin Schumacher; J. David Sweatt; Richard Paylor; Farah D. Lubin

It has been established that regulation of chromatin structure through post-translational modification of histone proteins, primarily histone H3 phosphorylation and acetylation, is an important early step in the induction of synaptic plasticity and formation of long-term memory. In this study, we investigated the contribution of another histone modification, histone methylation, to memory formation in the adult hippocampus. We found that trimethylation of histone H3 at lysine 4 (H3K4), an active mark for transcription, is upregulated in hippocampus 1 h following contextual fear conditioning. In addition, we found that dimethylation of histone H3 at lysine 9 (H3K9), a molecular mark associated with transcriptional silencing, is increased 1 h after fear conditioning and decreased 24 h after context exposure alone and contextual fear conditioning. Trimethylated H3K4 levels returned to baseline levels at 24 h. We also found that mice deficient in the H3K4-specific histone methyltransferase, Mll, displayed deficits in contextual fear conditioning relative to wild-type animals. This suggests that histone methylation is required for proper long-term consolidation of contextual fear memories. Interestingly, inhibition of histone deacetylases (HDACs) with sodium butyrate (NaB) resulted in increased H3K4 trimethylation and decreased H3K9 dimethylation in hippocampus following contextual fear conditioning. Correspondingly, we found that fear learning triggered increases in H3K4 trimethylation at specific gene promoter regions (Zif268 and bdnf) with altered DNA methylation and MeCP2 DNA binding. Zif268 DNA methylation levels returned to baseline at 24 h. Together, these data demonstrate that histone methylation is actively regulated in the hippocampus and facilitates long-term memory formation.


Neuron | 2007

The IκB Kinase Regulates Chromatin Structure during Reconsolidation of Conditioned Fear Memories

Farah D. Lubin; J. David Sweatt

Previously formed memories are susceptible to disruption immediately after recall due to a necessity to be reconsolidated after retrieval. Protein translation mechanisms have been widely implicated as being necessary for memory reconsolidation, but gene transcription mechanisms have been much less extensively studied in this context. We found that retrieval of contextual conditioned fear memories activates the NF-kappaB pathway to regulate histone H3 phosphorylation and acetylation at specific gene promoters in hippocampus, specifically via IKKalpha and not the NF-kappaB DNA-binding complex. Behaviorally, we found that inhibition of IKKalpha regulation of either chromatin structure or NF-kappaB DNA-binding complex activity leads to impairments in fear memory reconsolidation, and that elevating histone acetylation rescues this memory deficit in the face of IKK blockade. These data provide insights into IKK-regulated transcriptional mechanisms in hippocampus that are necessary for memory reconsolidation.


The Journal of Neuroscience | 2008

Epigenetics in the Nervous System

Yan Jiang; Brett Langley; Farah D. Lubin; William Renthal; Marcelo A. Wood; Dag H. Yasui; Arvind Kumar; Eric J. Nestler; Schahram Akbarian; Andrea Beckel-Mitchener

It is becoming increasingly clear that epigenetic modifications are critical factors in the regulation of gene expression. With regard to the nervous system, epigenetic alterations play a role in a diverse set of processes and have been implicated in a variety of disorders. Gaining a more complete understanding of the essential components and underlying mechanisms involved in epigenetic regulation could lead to novel treatments for a number of neurological and psychiatric conditions.


The Journal of Neuroscience | 2012

G9a/GLP Histone Lysine Dimethyltransferase Complex Activity in the Hippocampus and the Entorhinal Cortex Is Required for Gene Activation and Silencing during Memory Consolidation

Swati Gupta-Agarwal; Aimee V. Franklin; Thomas DeRamus; Muriah Wheelock; Robin L. Davis; Lori L. McMahon; Farah D. Lubin

Learning triggers alterations in gene transcription in brain regions such as the hippocampus and the entorhinal cortex (EC) that are necessary for long-term memory (LTM) formation. Here, we identify an essential role for the G9a/G9a-like protein (GLP) lysine dimethyltransferase complex and the histone H3 lysine 9 dimethylation (H3K9me2) marks it catalyzes, in the transcriptional regulation of genes in area CA1 of the rat hippocampus and the EC during memory consolidation. Contextual fear learning increased global levels of H3K9me2 in area CA1 and the EC, with observable changes at the Zif268, DNMT3a, BDNF exon IV, and cFOS gene promoters, which occurred in concert with mRNA expression. Inhibition of G9a/GLP in the EC, but not in the hippocampus, enhanced contextual fear conditioning relative to control animals. The inhibition of G9a/GLP in the EC induced several histone modifications that include not only methylation but also acetylation. Surprisingly, we found that downregulation of G9a/GLP activity in the EC enhanced H3K9me2 in area CA1, resulting in transcriptional silencing of the non-memory permissive gene COMT in the hippocampus. In addition, synaptic plasticity studies at two distinct EC–CA1 cellular pathways revealed that G9a/GLP activity is critical for hippocampus-dependent long-term potentiation initiated in the EC via the perforant pathway, but not the temporoammonic pathway. Together, these data demonstrate that G9a/GLP differentially regulates gene transcription in the hippocampus and the EC during memory consolidation. Furthermore, these findings support the possibility of a role for G9a/GLP in the regulation of cellular and molecular cross talk between these two brain regions during LTM formation.


Learning & Memory | 2008

c-Rel, an NF-κB family transcription factor, is required for hippocampal long-term synaptic plasticity and memory formation

Hyung Jin Ahn; Caterina M. Hernandez; Jonathan M. Levenson; Farah D. Lubin; Hsiou Chi Liou; J. David Sweatt

Transcription is a critical component for consolidation of long-term memory. However, relatively few transcriptional mechanisms have been identified for the regulation of gene expression in memory formation. In the current study, we investigated the activity of one specific member of the NF-kappaB transcription factor family, c-Rel, during memory consolidation. We found that contextual fear conditioning elicited a time-dependent increase in nuclear c-Rel levels in area CA1 and DG of hippocampus. These results suggest that c-rel is active in regulating transcription during memory consolidation. To identify the functional role of c-Rel in memory formation, we characterized c-rel(-/-) mice in several behavioral tasks. c-rel(-/-) mice displayed significant deficits in freezing behavior 24 h after training for contextual fear conditioning but showed normal freezing behavior in cued fear conditioning and in short-term contextual fear conditioning. In a novel object recognition test, wild-type littermate mice exhibited a significant preference for a novel object, but c-rel(-/-) mice did not. These results indicate that c-rel(-/-) mice have impaired hippocampus-dependent memory formation. To investigate the role of c-Rel in long-term synaptic plasticity, baseline synaptic transmission and long-term potentiation (LTP) at Schaffer collateral synapses in c-rel(-/-) mice was assessed. c-rel(-/-) slices had normal baseline synaptic transmission but exhibited significantly less LTP than did wild-type littermate slices. Together, our results demonstrate that c-Rel is necessary for long-term synaptic potentiation in vitro and hippocampus-dependent memory formation in vivo.


Journal of Biological Chemistry | 2006

Regulation of surface localization of the small conductance Ca2+-activated potassium channel, Sk2, through direct phosphorylation by cAMP-dependent protein kinase

Yajun Ren; Lyndon Forbes Barnwell; Jon C. Alexander; Farah D. Lubin; John P. Adelman; Paul J. Pfaffinger; Laura A. Schrader; Anne E. Anderson

Small conductance, Ca2+-activated voltage-independent potassium channels (SK channels) are widely expressed in diverse tissues; however, little is known about the molecular regulation of SK channel subunits. Direct alteration of ion channel subunits by kinases is a candidate mechanism for functional modulation of these channels. We find that activation of cyclic AMP-dependent protein kinase (PKA) with forskolin (50 μm) causes a dramatic decrease in surface localization of the SK2 channel subunit expressed in COS7 cells due to direct phosphorylation of the SK2 channel subunit. PKA phosphorylation studies using the intracellular domains of the SK2 channel subunit expressed as glutathione S-transferase fusion protein constructs showed that both the amino-terminal and carboxyl-terminal regions are PKA substrates in vitro. Mutational analysis identified a single PKA phosphorylation site within the amino-terminal of the SK2 subunit at serine 136. Mutagenesis and mass spectrometry studies identified four PKA phosphorylation sites: Ser465 (minor site) and three amino acid residues Ser568, Ser569, and Ser570 (major sites) within the carboxyl-terminal region. A mutated SK2 channel subunit, with the three contiguous serines mutated to alanines to block phosphorylation at these sites, shows no decrease in surface expression after PKA stimulation. Thus, our findings suggest that PKA phosphorylation of these three sites is necessary for PKA-mediated reorganization of SK2 surface expression.


The Neuroscientist | 2011

Epigenetic Mechanisms Critical Contributors to Long-Term Memory Formation

Farah D. Lubin; Swati Gupta; R. Ryley Parrish; Nicola M. Grissom; Robin L. Davis

Recent advances in chromatin biology have identified a role for epigenetic mechanisms in the regulation of neuronal gene expression changes, a necessary process for proper synaptic plasticity and memory formation. Experimental evidence for dynamic chromatin remodeling influencing gene transcription in postmitotic neurons grew from initial reports describing posttranslational modifications of histones, including phosphorylation and acetylation occurring in various brain regions during memory consolidation. An accumulation of recent studies, however, has also highlighted the importance of other epigenetic modifications, such as DNA methylation and histone methylation, as playing a role in memory formation. This present review examines learning-induced gene transcription by chromatin remodeling underlying long-lasting changes in neurons, with direct implications for the study of epigenetic mechanisms in long-term memory formation and behavior. Furthermore, the study of epigenetic gene regulation, in conjunction with transcription factor activation, can provide complementary lines of evidence to further understanding transcriptional mechanisms subserving memory storage.

Collaboration


Dive into the Farah D. Lubin's collaboration.

Top Co-Authors

Avatar

Timothy J. Jarome

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar

J. David Sweatt

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

R. Ryley Parrish

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anderson A. Butler

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

William M. Webb

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Rebecca M. Hauser

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Robin L. Davis

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Schahram Akbarian

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Susan C. Buckingham

University of Alabama at Birmingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge