Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Farah Tasnim is active.

Publication


Featured researches published by Farah Tasnim.


Kidney International | 2013

Human embryonic stem cells differentiate into functional renal proximal tubular–like cells

Karthikeyan Narayanan; Karl Schumacher; Farah Tasnim; Karthikeyan Kandasamy; Annegret Schumacher; Ming Ni; Shujun Gao; Began Gopalan; Daniele Zink; Jackie Y. Ying

Renal cells are used in basic research, disease models, tissue engineering, drug screening, and in vitro toxicology. In order to provide a reliable source of human renal cells, we developed a protocol for the differentiation of human embryonic stem cells into renal epithelial cells. The differentiated stem cells expressed markers characteristic of renal proximal tubular cells and their precursors, whereas markers of other renal cell types were not expressed or expressed at low levels. Marker expression patterns of these differentiated stem cells and in vitro cultivated primary human renal proximal tubular cells were comparable. The differentiated stem cells showed morphological and functional characteristics of renal proximal tubular cells, and generated tubular structures in vitro and in vivo. In addition, the differentiated stem cells contributed in organ cultures for the formation of simple epithelia in the kidney cortex. Bioreactor experiments showed that these cells retained their functional characteristics under conditions as applied in bioartificial kidneys. Thus, our results show that human embryonic stem cells can differentiate into renal proximal tubular-like cells. Our approach would provide a source for human renal proximal tubular cells that are not affected by problems associated with immortalized cell lines or primary cells.


Biomaterials | 2009

The impact of extracellular matrix coatings on the performance of human renal cells applied in bioartificial kidneys

Huishi Zhang; Farah Tasnim; Jackie Y. Ying; Daniele Zink

Extracellular matrix (ECM) coatings have been used to improve cell performance in bioartificial kidneys (BAKs). However, their effects on primary human renal proximal tubule cells (HPTCs), which is the most important cell type with regard to clinical applications, have not been tested systematically. Also, the effects of ECM coatings on cell performance during extended time periods have not been addressed. Studying such effects is important for the development of long-term applications. Herein we analyzed for the first time systematically the effects of ECM coatings on proliferation and differentiation of human renal cells and we addressed, in particular, formation and long-term maintenance of differentiated epithelia. Our study focused on HPTCs. ECM coatings were tested alone or in combination with the growth factor bone morphogenetic protein-7 and other additives. The best results were obtained with ECMs consisting of the basal lamina components, laminin or collagen IV, and differentiated epithelia could be maintained up to three weeks on these ECMs. These results provide for the first time clear evidence which kinds of ECM coatings are most appropriate for BAKs. The results also showed that alpha-SMA-expressing myofibroblasts played a key role in the final disruption of differentiated epithelia. This suggests that epithelial-to-mesenchymal transition-related processes might be the major obstacle in long-term applications and such processes should be carefully addressed in future BAK-related research.


Biomaterials | 2011

Characterization of membrane materials and membrane coatings for bioreactor units of bioartificial kidneys.

Ming Ni; Jeremy C.M. Teo; Mohammed Shahrudin bin Ibrahim; Kangyi Zhang; Farah Tasnim; Pei-Yong Chow; Daniele Zink; Jackie Y. Ying

The bioreactor unit of bioartificial kidneys contains porous membranes seeded with renal cells. For clinical applications, it is mandatory that human primary renal proximal tubule cells (HPTCs) form differentiated epithelia on the membranes. Here, we show that HPTCs do not grow and survive on a variety of polymeric membrane materials. This applies also to membranes consisting of polysulfone/polyvinylpyrrolidone (PSF/PVP), which have been used in the bioreactor unit of bioartificial kidneys after coating with an extracellular matrix (ECM). Our data reveal that coating with just an ECM does not sufficiently improve HPTC performance on non-HPTC-compatible membrane materials. On the other hand, we have characterized the effects of a variety of surface treatments and coatings, and found that double coating with 3,4-dihydroxy-l-phenylalanine and an ECM markedly improves HPTC performance and results in the formation of differentiated epithelia on PSF/PVP membranes. We have also synthesized alternative membrane materials, and characterized membranes consisting of polysulfone and Fullcure. We found that these membranes sustain proper HPTC performance without the need for surface treatments or coatings. Together, our data reveal that the materials that have been previously applied in bioartificial kidneys are not suitable for applications with HPTCs. This study elucidates the types of membrane materials and coatings that are favorable for the bioreactor unit of bioartificial kidneys.


Fibrogenesis & Tissue Repair | 2010

Achievements and challenges in bioartificial kidney development

Farah Tasnim; Rensheng Deng; Min Hu; Sean S. Liour; Yao Li; Ming Ni; Jackie Y. Ying; Daniele Zink

Bioartificial kidneys (BAKs) combine a conventional hemofilter in series with a bioreactor unit containing renal epithelial cells. The epithelial cells derived from the renal tubule should provide transport, metabolic, endocrinologic and immunomodulatory functions. Currently, primary human renal proximal tubule cells are most relevant for clinical applications. However, the use of human primary cells is associated with many obstacles, and the development of alternatives and an unlimited cell source is one of the most urgent challenges. BAKs have been applied in Phase I/II and Phase II clinical trials for the treatment of critically ill patients with acute renal failure. Significant effects on cytokine concentrations and long-term survival were observed. A subsequent Phase IIb clinical trial was discontinued after an interim analysis, and these results showed that further intense research on BAK-based therapies for acute renal failure was required. Development of BAK-based therapies for the treatment of patients suffering from end-stage renal disease is even more challenging, and related problems and research approaches are discussed herein, along with the development of mobile, portable, wearable and implantable devices.


Toxicology Research | 2013

An in vitro method for the prediction of renal proximal tubular toxicity in humans

Yao Li; Zay Yar Oo; Shu Yung Chang; Peng Huang; Kim Guan Eng; Jia Liu Zeng; Alicia J. Kaestli; Began Gopalan; Karthikeyan Kandasamy; Farah Tasnim; Daniele Zink

The kidney is one of the major target organs for drug-induced toxicity. The renal proximal tubule is frequently affected due to its roles in drug transport and in concentrating the glomerular filtrate. Drug-induced kidney injury is associated with increased morbidity and mortality of patients. During drug development, nephrotoxicity is typically detected only late, which leads to high costs for the pharmaceutical industry. A central problem is the lack of pre-clinical models with high predictability. Regulatory accepted or validated in vitro models for the prediction of nephrotoxicity are not available. We developed a novel in vitro model for the prediction of renal proximal tubular toxicity in humans. It employs human primary renal proximal tubular cells and the expression levels of interleukin (IL)-6 and IL-8 were used as the endpoint. The model was evaluated with 41 well-characterized drugs and chemicals. The median values of the major performance metrics (balanced accuracy, sensitivity, specificity, positive predictive value, negative predictive value and area under the curve of the receiver operating characteristic curve) ranged between 0.76 and 0.85. This revealed that the predictability of the model is high and it would be expected that in ∼76%–85% of the cases where compounds were predicted as positives or negatives the predictions would be correct. Altogether, the data suggest that the model would allow the prediction of drug-induced proximal tubular toxicity at early pre-clinical stages during drug development. Future work will aim at further validating this model and adapting it to recently developed renal proximal tubular-like cells derived from human pluripotent stem cells.


Journal of Cellular and Molecular Medicine | 2011

Generation of easily accessible human kidney tubules on two-dimensional surfaces in vitro

Huishi Zhang; Samantha Fong‐Ting Lau; Ber Fong Heng; Pei Yun Teo; P. K. D. Thilini Alahakoon; Ming Ni; Farah Tasnim; Jackie Y. Ying; Daniele Zink

The generation of tissue‐like structures in vitro is of major interest for various fields of research including in vitro toxicology, regenerative therapies and tissue engineering. Usually 3D matrices are used to engineer tissue‐like structures in vitro, and for the generation of kidney tubules, 3D gels are employed. Kidney tubules embedded within 3D gels are difficult to access for manipulations and imaging. Here we show how large and functional human kidney tubules can be generated in vitro on 2D surfaces, without the use of 3D matrices. The mechanism used by human primary renal proximal tubule cells for tubulogenesis on 2D surfaces appears to be distinct from the mechanism employed in 3D gels, and tubulogenesis on 2D surfaces involves interactions between epithelial and mesenchymal cells. The process is induced by transforming growth factor‐β1, and enhanced by a 3D substrate architecture. However, after triggering the process, the formation of renal tubules occurs with remarkable independence from the substrate architecture. Human proximal tubules generated on 2D surfaces typically have a length of several millimetres, and are easily accessible for manipulations and imaging, which makes them attractive for basic research and in vitro nephrotoxicology. The experimental system described also allows for in vitro studies on how primary human kidney cells regenerate renal structures after organ disruption. The finding that human kidney cells organize tissue‐like structures independently from the substrate architecture has important consequences for kidney tissue engineering, and it will be important, for instance, to inhibit the process of tubulogenesis on 2D surfaces in bioartificial kidneys.


Journal of Cellular and Molecular Medicine | 2013

A novel design of bioartificial kidneys with improved cell performance and haemocompatibility.

Zay Yar Oo; Karthikeyan Kandasamy; Farah Tasnim; Daniele Zink

Treatment with bioartificial kidneys had beneficial effects in animal experiments and improved survival of critically ill patients with acute kidney injury in a Phase II clinical trial. However, a Phase II b clinical trial failed. This and other results suggested various problems with the current design of bioartificial kidneys. We propose a novel design to improve various properties of device, including haemocompatibility and cell performance. An important feature of the novel design is confinement of the blood to the lumina of the hollow fibre membranes. This avoids exposure of the blood to the non‐haemocompatible outer surfaces of hollow fibre membranes, which usually occurs in bioartificial kidneys. We use these outer surfaces as substrate for cell growth. Our results show that commercial hollow fibre membranes can be directly applied in the bioreactor when human primary renal proximal tubular cells are grown in this configuration, and no coatings are required for the formation of robust and functional renal epithelia. Furthermore, we demonstrate that the bioreactor unit produces significant amounts of interleukins. This result helps to understand the immunomodulatory effects of bioartificial kidneys, which have been observed previously. The novel bioartificial kidney design outlined here and the results obtained would be expected to improve the safety and performance of bioartificial kidneys and to contribute to a better understanding of their effects.


American Journal of Physiology-renal Physiology | 2012

Cross talk between primary human renal tubular cells and endothelial cells in cocultures

Farah Tasnim; Daniele Zink

Interactions between renal tubular epithelial cells and adjacent endothelial cells are essential for normal renal functions but also play important roles in renal disease and repair. Here, we investigated cocultures of human primary renal proximal tubular cells (HPTC) and human primary endothelial cells to address the cross talk between these cell types. HPTC showed improved proliferation, marker gene expression, and enzyme activity in cocultures. Also, the long-term maintenance of epithelia formed by HPTC was improved, which was due to the secretion of transforming growth factor-β1 and its antagonist α2-macroglobulin. HPTC induced endothelial cells to secrete increased amounts of these factors, which balanced each other functionally and only displayed in combination the observed positive effects. In addition, in the presence of HPTC endothelial cells expressed increased amounts of hepatocyte growth factor and vascular endothelial growth factor, which have well-characterized effects on renal tubular epithelial cells as well as on endothelial cells. Together, the results showed that HPTC stimulated endothelial cells to express a functionally balanced combination of various factors, which in turn improved the performance of HPTC. The results give new insights into the cross talk between renal epithelial and endothelial cells and suggest that cocultures could be also useful models for the analysis of cellular communication in renal disease and repair. Furthermore, the characterization of defined microenvironments, which positively affect HPTC, will be helpful for improving the performance of this cell type in in vitro applications including in vitro toxicology and kidney tissue engineering.


Molecular Pharmaceutics | 2016

Functionally Enhanced Human Stem Cell Derived Hepatocytes in Galactosylated Cellulosic Sponges for Hepatotoxicity Testing

Farah Tasnim; Yi-Chin Toh; Yinghua Qu; Huan Li; Derek Phan; Balakrishnan Chakrapani Narmada; Abhishek Ananthanarayanan; Nikhil Mittal; Ryan Q Meng; Hanry Yu

Pluripotent stem cell derived hepatocyte-like cells (hPSC-HLCs) are an attractive alternative to primary human hepatocytes (PHHs) used in applications ranging from therapeutics to drug safety testing studies. It would be critical to improve and maintain mature hepatocyte functions of the hPSC-HLCs, especially for long-term studies. If 3D culture systems were to be used for such purposes, it would be important that the system can support formation and maintenance of optimal-sized spheroids for long periods of time, and can also be directly deployed in liver drug testing assays. We report the use of 3-dimensional (3D) cellulosic scaffold system for the culture of hPSC-HLCs. The scaffold has a macroporous network which helps to control the formation and maintenance of the spheroids for weeks. Our results show that culturing hPSC-HLCs in 3D cellulosic scaffolds increases functionality, as demonstrated by improved urea production and hepatic marker expression. In addition, hPSC-HLCs in the scaffolds exhibit a more mature phenotype, as shown by enhanced cytochrome P450 activity and induction. This enables the system to show a higher sensitivity to hepatotoxicants and a higher degree of similarity to PHHs when compared to conventional 2D systems. These results suggest that 3D cellulosic scaffolds are ideal for the long-term cultures needed to mature hPSC-HLCs. The mature hPSC-HLCs with improved cellular function can be continually maintained in the scaffolds and directly used for hepatotoxicity assays, making this system highly attractive for drug testing applications.


Biomaterials | 2015

Cost-effective differentiation of hepatocyte-like cells from human pluripotent stem cells using small molecules

Farah Tasnim; Derek Phan; Yi-Chin Toh; Hanry Yu

Collaboration


Dive into the Farah Tasnim's collaboration.

Top Co-Authors

Avatar

Daniele Zink

Ludwig Maximilian University of Munich

View shared research outputs
Top Co-Authors

Avatar

Jackie Y. Ying

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hanry Yu

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge