Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Farahnaz Fahimipour is active.

Publication


Featured researches published by Farahnaz Fahimipour.


Materials Science and Engineering: C | 2016

Development of PLGA-coated β-TCP scaffolds containing VEGF for bone tissue engineering

Arash Khojasteh; Farahnaz Fahimipour; Mohamadreza Baghaban Eslaminejad; Mohammad Jafarian; Shahrbanoo Jahangir; Farshid Bastami; Mohammadreza Tahriri; Akbar Karkhaneh; Lobat Tayebi

Bone tissue engineering is sought to apply strategies for bone defects healing without limitations and short-comings of using either bone autografts or allografts and xenografts. The aim of this study was to fabricate a thin layer poly(lactic-co-glycolic) acid (PLGA) coated beta-tricalcium phosphate (β-TCP) scaffold with sustained release of vascular endothelial growth factor (VEGF). PLGA coating increased compressive strength of the β-TCP scaffolds significantly. For in vitro evaluations, canine mesenchymal stem cells (cMSCs) and canine endothelial progenitor cells (cEPCs) were isolated and characterized. Cell proliferation and attachment were demonstrated and the rate of cells proliferation on the VEGF released scaffold was significantly more than compared to the scaffolds with no VEGF loading. A significant increase in expression of COL1 and RUNX2 was indicated in the scaffolds loaded with VEGF and MSCs compared to the other groups. Consequently, PLGA coated β-TCP scaffold with sustained and localized release of VEGF showed favourable results for bone regeneration in vitro, and this scaffold has the potential to use as a drug delivery device in the future.


Materials Science and Engineering: C | 2017

A current overview of materials and strategies for potential use in maxillofacial tissue regeneration.

Hossein E. Jazayeri; Mohammadreza Tahriri; Mehdi Razavi; Kimia Khoshroo; Farahnaz Fahimipour; Erfan Dashtimoghadam; Luis Eduardo Almeida; Lobat Tayebi

Tissue regeneration is rapidly evolving to treat anomalies in the entire human body. The production of biodegradable, customizable scaffolds to achieve this clinical aim is dependent on the interdisciplinary collaboration among clinicians, bioengineers and materials scientists. While bone grafts and varying reconstructive procedures have been traditionally used for maxillofacial defects, the goal of this review is to provide insight on all materials involved in the progressing utilization of the tissue engineering approach to yield successful treatment outcomes for both hard and soft tissues. In vitro and in vivo studies that have demonstrated the restoration of bone and cartilage tissue with different scaffold material types, stem cells and growth factors show promise in regenerative treatment interventions for maxillofacial defects. The repair of the temporomandibular joint (TMJ) disc and mandibular bone were discussed extensively in the report, supported by evidence of regeneration of the same tissue types in different medical capacities. Furthermore, in addition to the thorough explanation of polymeric, ceramic, and composite scaffolds, this review includes the application of biodegradable metallic scaffolds for regeneration of hard tissue. The purpose of compiling all the relevant information in this review is to lay the foundation for future investigation in materials used in scaffold synthesis in the realm of oral and maxillofacial surgery.


Journal of Photochemistry and Photobiology B-biology | 2016

The effect of He–Ne and Ga–Al–As lasers on the healing of oral mucosa in diabetic mice

Farahnaz Fahimipour; Behzad Houshmand; Parvin Alemi; Mohammad Asnaashari; Mahmoud Akhavan Tafti; Fatemeh Akhoundikharanagh; Seyed Emadeddin Najafi Farashah; Mohammad Aminisharifabad; Aghdas Setoudehnia Korani; Mina Mahdian; Farshid Bastami; Mohammadreza Tahriri

Delayed wound healing is one of the complications of diabetes mellitus. Low-level laser therapy (LLLT) has been used to accelerate wound healing however the effect of LLLT on the hard palate wound healing in streptozotocin-induced diabetic (STZ-D) mice has not yet been characterized. This study aims to determine the effect of LLLT (He-Ne and Ga-Al-As laser) on the process of wound healing in the hard palate among diabetic and non-diabetic mice. 90 adult male mice were divided into six groups. Type 1 diabetes mellitus was induced in three groups by means of injection of STZ. Of these, one group was irradiated with He-Ne laser (DH group), one with Ga-Al-As laser (DG group) and one did not undergo any LLLT (DC group). The remaining groups were non-diabetic which were allotted to laser therapy with He-Ne laser (NH group) or with Ga-Al-As laser (NG group) or no LLLT (NC group). Five animals from each group were killed on the third, seventh, and fourteenth days after surgery, and biopsies were made for histological analysis. On the 3rd and 7th days after the surgery, the number of polymorphonuclear (PMN) cells in NH, DH, NG, and DG groups was significantly lower than that of the control groups. On the 3rd, 7th and 14th days, the fibroblasts and new blood vessel counts and collagen fibers in diabetic laser treated groups (DG and DH) were significantly higher compared to that of NC, DC, NH and NG groups. On the 7th and 14th days, the fibroblasts and new blood vessel counts and collagen fibers in NH, DH, NG, and DG groups were also significantly higher than that of the control groups, and the fibroblast and new blood vessel counts and collagen density fibers in NH and DH groups were higher than that of the NG and DG groups. LLLT with He-Ne laser compared to Ga-Al-As laser has a positive healing effect on hard palate gingival wounds in STZ-D mice.


Carbohydrate Polymers | 2018

Dextran Hydrogels Incorporated with Bioactive Glass-Ceramic: Nanocomposite Scaffolds for Bone Tissue Engineering

Parisa Nikpour; Hamed Salimi-Kenari; Farahnaz Fahimipour; Sayed Mahmood Rabiee; Mohammad Imani; Erfan Dashtimoghadam; Lobat Tayebi

A series of nanocomposite scaffolds comprised of dextran (Dex) and sol-gel derived bioactive glass ceramic nanoparticles (nBGC: 0-16 (wt%)) were fabricated as bioactive scaffolds for bone tissue engineering. Scanning electron microscopy showed Dex/nBGC scaffolds were consisting of a porous 3D microstructure with an average pore size of 240 μm. Energy-dispersive x-ray spectroscopy illustrated nBGC nanoparticles were homogenously distributed within the Dex matrix at low nBGC content (2 wt%), while agglomeration was observed at higher nBGC contents. It was found that the osmotic pressure and nBGC agglomeration at higher nBGC contents leads to increased water uptake, then reduction of the compressive modulus. Bioactivity of Dex/nBGC scaffolds was validated through apatite formation after submersion in the simulated body fluid. Dex/nBGC composite scaffolds were found to show improved human osteoblasts (HOBs) proliferation and alkaline phosphatase (ALP) activity with increasing nBGC content up to 16 (wt%) over two weeks. Owing to favorable physicochemical and bioactivity properties, the Dex/nBGC composite hydrogels can be offered as promising bioactive scaffolds for bone tissue engineering applications.


Dental Materials | 2017

3D printed TCP-based scaffold incorporating VEGF-loaded PLGA microspheres for craniofacial tissue engineering

Farahnaz Fahimipour; Morteza Rasoulianboroujeni; Erfan Dashtimoghadam; Kimia Khoshroo; Mohammadreza Tahriri; Farshid Bastami; Douglas Lobner; Lobat Tayebi

OBJECTIVE Vascularization is a critical process during bone regeneration/repair and the lack of tissue vascularization is recognized as a major challenge in applying bone tissue engineering methods for cranial and maxillofacial surgeries. The aim of our study is to fabricate a vascular endothelial growth factor (VEGF)-loaded gelatin/alginate/β-TCP composite scaffold by 3D printing method using a computer-assisted design (CAD) model. METHODS The paste, composed of (VEGF-loaded PLGA)-containing gelatin/alginate/β-TCP in water, was loaded into standard Nordson cartridges and promptly employed for printing the scaffolds. Rheological characterization of various gelatin/alginate/β-TCP formulations led to an optimized paste as a printable bioink at room temperature. RESULTS The in vitro release kinetics of the loaded VEGF revealed that the designed scaffolds fulfill the bioavailability of VEGF required for vascularization in the early stages of tissue regeneration. The results were confirmed by two times increment of proliferation of human umbilical vein endothelial cells (HUVECs) seeded on the scaffolds after 10 days. The compressive modulus of the scaffolds, 98±11MPa, was found to be in the range of cancellous bone suggesting their potential application for craniofacial tissue engineering. Osteoblast culture on the scaffolds showed that the construct supports cell viability, adhesion and proliferation. It was found that the ALP activity increased over 50% using VEGF-loaded scaffolds after 2 weeks of culture. SIGNIFICANCE The 3D printed gelatin/alginate/β-TCP scaffold with slow releasing of VEGF can be considered as a potential candidate for regeneration of craniofacial defects.


Archive | 2017

CHAPTER 8:Smart Biomaterials for Tissue Engineering of Cartilage

Mina D. Fahmy; Brinda Shah; Mehdi Razavi; Hossein E. Jazayeri; Farahnaz Fahimipour; Joshua White; Radi Masri; Lobat Tayebi

Smart materials have made significant changes within the realm of tissue engineering research. Smart biomaterials have the unique ability to respond to their environments, and interact with different biological systems in turn producing specific responses. In this chapter, we focus on the tissue engineering of cartilage with the use of smart materials. Specifically, we will discuss the desired properties of such materials for optimal biological responses and why certain natural and synthetic materials are used. We also examine the use of smart matrices in the context of those that are thermo-responsive, pH-responsive, bioactive agent releasing, and self-assembling matrices. Response to dynamic loading, as well as the use of matrix metalloproteinase and shape-memory systems are explored. Finally, future applications of smart materials within a broad scope are considered.


Dental Materials | 2017

Collagenous matrix supported by a 3D-printed scaffold for osteogenic differentiation of dental pulp cells

Farahnaz Fahimipour; Erfan Dashtimoghadam; Morteza Rasoulianboroujeni; Mostafa Yazdimamaghani; Kimia Khoshroo; Mohammadreza Tahriri; Amir Yadegari; Jose A. Gonzalez; Daryoosh Vashaee; Douglas Lobner; Tahereh Sadat Jafarzadeh Kashi; Lobat Tayebi

OBJECTIVE A systematic characterization of hybrid scaffolds, fabricated based on combinatorial additive manufacturing technique and freeze-drying method, is presented as a new platform for osteoblastic differentiation of dental pulp cells (DPCs). METHODS The scaffolds were consisted of a collagenous matrix embedded in a 3D-printed beta-tricalcium phosphate (β-TCP) as the mineral phase. The developed construct design was intended to achieve mechanical robustness owing to 3D-printed β-TCP scaffold, and biologically active 3D cell culture matrix pertaining to the Collagen extracellular matrix. The β-TCP precursor formulations were investigated for their flow-ability at various temperatures, which optimized for fabrication of 3D printed scaffolds with interconnected porosity. The hybrid constructs were characterized by 3D laser scanning microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and compressive strength testing. RESULTS The in vitro characterization of scaffolds revealed that the hybrid β-TCP/Collagen constructs offer superior DPCs proliferation and alkaline phosphatase (ALP) activity compared to the 3D-printed β-TCP scaffold over three weeks. Moreover, it was found that the incorporation of TCP into the Collagen matrix improves the ALP activity. SIGNIFICANCE The presented results converge to suggest the developed 3D-printed β-TCP/Collagen hybrid constructs as a new platform for osteoblastic differentiation of DPCs for craniomaxillofacial bone regeneration.


Tissue & Cell | 2018

3D printed tissue engineered model for bone invasion of oral cancer

Thafar Almela; Sarmad Al-Sahaf; Ian M. Brook; Kimia Khoshroo; Morteza Rasoulianboroujeni; Farahnaz Fahimipour; Mohammadreza Tahriri; Erfan Dashtimoghadam; Robert Bolt; Lobat Tayebi; Keyvan Moharamzadeh

Recent advances in three-dimensional printing technology have led to a rapid expansion of its applications in tissue engineering. The present study was designed to develop and characterize an in vitro multi-layered human alveolar bone, based on a 3D printed scaffold, combined with tissue engineered oral mucosal model. The objective was to incorporate oral squamous cell carcinoma (OSCC) cell line spheroids to the 3D model at different anatomical levels to represent different stages of oral cancer. Histological evaluation of the 3D tissue model revealed a tri-layered structure consisting of distinct epithelial, connective tissue, and bone layers; replicating normal oral tissue architecture. The mucosal part showed a well-differentiated stratified oral squamous epithelium similar to that of the native tissue counterpart, as demonstrated by immunohistochemistry for cytokeratin 13 and 14. Histological assessment of the cancerous models demonstrated OSCC spheroids at three depths including supra-epithelial level, sub-epithelial level, and deep in the connective tissue-bone interface. The 3D tissue engineered composite model closely simulated the native oral hard and soft tissues and has the potential to be used as a valuable in vitro model for the investigation of bone invasion of oral cancer and for the evaluation of novel diagnostic or therapeutic approaches to manage OSCC in the future.


Scientific Reports | 2018

Dual Porosity Protein-based Scaffolds with Enhanced Cell Infiltration and Proliferation

Morteza Rasoulianboroujeni; Nasim Kiaie; Fahimeh Sadat Tabatabaei; Amir Yadegari; Farahnaz Fahimipour; Kimia Khoshroo; Lobat Tayebi

Abstract3D dual porosity protein-based scaffolds have been developed using the combination of foaming and freeze-drying. The suggested approach leads to the production of large, highly porous scaffolds with negligible shrinkage and deformation compared to the conventional freeze-drying method. Scanning electron microscopy, standard histological processing and mercury intrusion porosimetry confirmed the formation of a dual network in the form of big primary pores (243 ± 14 µm) embracing smaller secondary pores (42 ± 3 µm) opened onto their surface, resembling a vascular network. High interconnectivity of the pores, confirmed by micro-CT, is shown to improve diffusion kinetics and support a relatively uniform distribution of isolated human dental pulp stem cells within the scaffold compared to conventional scaffolds. Dual network scaffolds indicate more than three times as high cell proliferation capability as conventional scaffolds in 14 days.


Materials Science and Engineering: C | 2018

Development of 3D printed PLGA/TiO2 nanocomposite scaffolds for bone tissue engineering applications

Morteza Rasoulianboroujeni; Farahnaz Fahimipour; P. Shah; Kimia Khoshroo; Mohammadreza Tahriri; H. Eslami; Amir Yadegari; Erfan Dashtimoghadam; Lobat Tayebi

Porous scaffolds were 3D-printed using poly lactic-co-glycolic acid (PLGA)/TiO2 composite (10:1 weight ratio) for bone tissue engineering applications. Addition of TiO2 nanoparticles improved the compressive modulus of scaffolds. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) revealed an increase in both glass transition temperature and thermal decomposition onset of the composite compared to pure PLGA. Furthermore, addition of TiO2 was found to enhance the wettability of the surface evidenced by reducing the contact angle from 90.5 ± 3.2 to 79.8 ± 2.4 which is in favor of cellular attachment and activity. The obtained results revealed that PLGA/TiO2 scaffolds significantly improved osteoblast proliferation compared to pure PLGA (p < 0.05). Furthermore, osteoblasts cultured on PLGA/TiO2 nanocomposite showed significantly higher ALP activity and improved calcium secretion compared to pure PLGA scaffolds (p < 0.05).

Collaboration


Dive into the Farahnaz Fahimipour's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge