Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lobat Tayebi is active.

Publication


Featured researches published by Lobat Tayebi.


International Journal of Nanomedicine | 2013

3D conductive nanocomposite scaffold for bone tissue engineering

Aref Shahini; Mostafa Yazdimamaghani; Kenneth J. Walker; Margaret A. Eastman; Hamed Hatami-Marbini; Brenda J. Smith; John L. Ricci; Sundar V. Madihally; Daryoosh Vashaee; Lobat Tayebi

Bone healing can be significantly expedited by applying electrical stimuli in the injured region. Therefore, a three-dimensional (3D) ceramic conductive tissue engineering scaffold for large bone defects that can locally deliver the electrical stimuli is highly desired. In the present study, 3D conductive scaffolds were prepared by employing a biocompatible conductive polymer, ie, poly(3,4-ethylenedioxythiophene) poly(4-styrene sulfonate) (PEDOT:PSS), in the optimized nanocomposite of gelatin and bioactive glass. For in vitro analysis, adult human mesenchymal stem cells were seeded in the scaffolds. Material characterizations using hydrogen-1 nuclear magnetic resonance, in vitro degradation, as well as thermal and mechanical analysis showed that incorporation of PEDOT:PSS increased the physiochemical stability of the composite, resulting in improved mechanical properties and biodegradation resistance. The outcomes indicate that PEDOT:PSS and polypeptide chains have close interaction, most likely by forming salt bridges between arginine side chains and sulfonate groups. The morphology of the scaffolds and cultured human mesenchymal stem cells were observed and analyzed via scanning electron microscope, micro-computed tomography, and confocal fluorescent microscope. Increasing the concentration of the conductive polymer in the scaffold enhanced the cell viability, indicating the improved microstructure of the scaffolds or boosted electrical signaling among cells. These results show that these conductive scaffolds are not only structurally more favorable for bone tissue engineering, but also can be a step forward in combining the tissue engineering techniques with the method of enhancing the bone healing by electrical stimuli.


Nature Materials | 2012

Long-range interlayer alignment of intralayer domains in stacked lipid bilayers.

Lobat Tayebi; Yicong Ma; Daryoosh Vashaee; Gang Chen; Sunil K. Sinha; Atul N. Parikh

Liquid-crystalline phases of stacked lipid bilayers represent a pervasive motif in biomolecular assemblies. Here we report that, in addition to the usual smectic order, multicomponent multilayer membranes can exhibit columnar order arising from the coupling of two-dimensional intralayer phase separation and interlayer smectic ordering. This coupling propagates across hundreds of membrane lamellae, producing long-range alignment of phase-separated domains. Quantitative analysis of real-time dynamical experiments reveals that there is an interplay between intralayer domain growth and interlayer coupling, suggesting the existence of cooperative multilayer epitaxy. We postulate that such long-range epitaxy is solvent-assisted, and that it originates from the surface tension associated with differences in the network of hydrogen-bonded water molecules at the hydrated interfaces between the domains and the surrounding phase. Our findings might inspire the development of self-assembly-based strategies for the long-range alignment of functional lipid domains.


Materials Science and Engineering: C | 2015

Surface modification of biodegradable porous Mg bone scaffold using polycaprolactone/bioactive glass composite

Mostafa Yazdimamaghani; Mehdi Razavi; Daryoosh Vashaee; Lobat Tayebi

A reduction in the degradation rate of magnesium (Mg) and its alloys is in high demand to enable these materials to be used in orthopedic applications. For this purpose, in this paper, a biocompatible polymeric layer reinforced with a bioactive ceramic made of polycaprolactone (PCL) and bioactive glass (BG) was applied on the surface of Mg scaffolds using dip-coating technique under low vacuum. The results indicated that the PCL-BG coated Mg scaffolds exhibited noticeably enhanced bioactivity compared to the uncoated scaffold. Moreover, the mechanical integrity of the Mg scaffolds was improved using the PCL-BG coating on the surface. The stable barrier property of the coatings effectively delayed the degradation activity of Mg scaffold substrates. Moreover, the coatings induced the formation of apatite layer on their surface after immersion in the SBF, which can enhance the biological bone in-growth and block the microcracks and pore channels in the coatings, thus prolonging their protective effect. Furthermore, it was shown that a three times increase in the concentration of PCL-BG noticeably improved the characteristics of scaffolds including their degradation resistance and mechanical stability. Since bioactivity, degradation resistance and mechanical integrity of a bone substitute are the key factors for repairing and healing fractured bones, we suggest that PCL-BG is a suitable coating material for surface modification of Mg scaffolds.


Materials Science and Engineering: C | 2014

In vitro study of nanostructured diopside coating on Mg alloy orthopedic implants

Mehdi Razavi; Mohammadhossein Fathi; Omid Savabi; Daryoosh Vashaee; Lobat Tayebi

The high corrosion rate of Mg alloys has hindered their application in various areas, particularly for orthopedic applications. In order to decrease the corrosion rate and to improve the bioactivity, mechanical stability and cytocompatibility of the Mg alloy, nanostructured diopside (CaMgSi2O6) has been coated on AZ91 Mg alloy using a combined micro arc oxidation (MAO) and electrophoretic deposition (EPD) method. The crystalline structure, the morphology and the composition of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Electrochemical corrosion test, immersion test, and compression test were used to evaluate the corrosion resistance, the in vitro bioactivity and the mechanical stability of the samples, respectively. The cytocompatibility of the samples was tested by the cell viability and the cell attachment of L-929 cells. The results confirmed that the diopside coating not only slows down the corrosion rate, but also enhances the in vitro bioactivity, mechanical stability and cytocompatibility of AZ91 Mg alloy. Therefore, Mg alloy coated with nanostructured diopside offers a promising approach for biodegradable bone implants.


International Journal of Nanomedicine | 2013

Multilayer bioactive glass/zirconium titanate thin films in bone tissue engineering and regenerative dentistry

Masoud Mozafari; E. Salahinejad; Vahid Shabafrooz; Mostafa Yazdimamaghani; Daryoosh Vashaee; Lobat Tayebi

Surface modification, particularly coatings deposition, is beneficial to tissue-engineering applications. In this work, bioactive glass/zirconium titanate composite thin films were prepared by a sol-gel spin-coating method. The surface features of the coatings were studied by scanning electron microscopy, atomic force microscopy, and spectroscopic reflection analyses. The results show that uniform and sound multilayer thin films were successfully prepared through the optimization of the process variables and the application of carboxymethyl cellulose as a dispersing agent. Also, it was found that the thickness and roughness of the multilayer coatings increase nonlinearly with increasing the number of the layers. This new class of nanocomposite coatings, comprising the bioactive and inert components, is expected not only to enhance bioactivity and biocompatibility, but also to protect the surface of metallic implants against wear and corrosion.


Materials Science and Engineering: C | 2015

In vivo assessments of bioabsorbable AZ91 magnesium implants coated with nanostructured fluoridated hydroxyapatite by MAO/EPD technique for biomedical applications.

Mehdi Razavi; Mohammadhossein Fathi; Omid Savabi; Daryoosh Vashaee; Lobat Tayebi

Although magnesium (Mg) is a unique biodegradable metal which possesses mechanical property similar to that of the natural bone and can be an attractive material to be used as orthopedic implants, its quick corrosion rate restricts its actual clinical applications. To control its rapid degradation, we have modified the surface of magnesium implant using fluoridated hydroxyapatite (FHA: Ca10(PO4)6OH2-xFx) through the combined micro-arc oxidation (MAO) and electrophoretic deposition (EPD) techniques, which was presented in our previous paper. In this article, the biocompatibility examinations were conducted on the coated AZ91 magnesium alloy by implanting it into the greater trochanter area of rabbits. The results of the in vivo animal test revealed a significant enhancement in the biocompatibility of FHA/MAO coated implant compared to the uncoated one. By applying the FHA/MAO coating on the AZ91 implant, the amount of weight loss and magnesium ion release in blood plasma decreased. According to the histological results, the formation of the new bone increased and the inflammation decreased around the implant. In addition, the implantation of the uncoated AZ91 alloy accompanied by the release of hydrogen gas around the implant; this release was suppressed by applying the coated implant. Our study exemplifies that the surface coating of magnesium implant using a bioactive ceramic such as fluoridated hydroxyapatite may improve the biocompatibility of the implant to make it suitable as a commercialized biomedical product.


Colloids and Surfaces B: Biointerfaces | 2014

Surface microstructure and in vitro analysis of nanostructured akermanite (Ca2MgSi2O7) coating on biodegradable magnesium alloy for biomedical applications.

Mehdi Razavi; Mohammadhossein Fathi; Omid Savabi; Batoul Hashemi Beni; Daryoosh Vashaee; Lobat Tayebi

Magnesium (Mg) alloys, owing to their biodegradability and good mechanical properties, have potential applications as biodegradable orthopedic implants. However, several poor properties including low corrosion resistance, mechanical stability and cytocompatibility have prevented their clinical application, as these properties may result in the sudden failure of the implants during the bone healing. In this research, nanostructured akermanite (Ca2MgSi2O7) powder was coated on the AZ91 Mg alloy through electrophoretic deposition (EPD) assisted micro arc oxidation (MAO) method to modify the properties of the alloy. The surface microstructure of coating, corrosion resistance, mechanical stability and cytocompatibility of the samples were characterized with different techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), electrochemical corrosion test, immersion test, compression test and cell culture test. The results showed that the nanostructured akermanite coating can improve the corrosion resistance, mechanical stability and cytocompatibility of the biodegradable Mg alloy making it a promising material to be used as biodegradable bone implants for orthopedic applications.


Materials Science and Engineering: C | 2016

Development of PLGA-coated β-TCP scaffolds containing VEGF for bone tissue engineering

Arash Khojasteh; Farahnaz Fahimipour; Mohamadreza Baghaban Eslaminejad; Mohammad Jafarian; Shahrbanoo Jahangir; Farshid Bastami; Mohammadreza Tahriri; Akbar Karkhaneh; Lobat Tayebi

Bone tissue engineering is sought to apply strategies for bone defects healing without limitations and short-comings of using either bone autografts or allografts and xenografts. The aim of this study was to fabricate a thin layer poly(lactic-co-glycolic) acid (PLGA) coated beta-tricalcium phosphate (β-TCP) scaffold with sustained release of vascular endothelial growth factor (VEGF). PLGA coating increased compressive strength of the β-TCP scaffolds significantly. For in vitro evaluations, canine mesenchymal stem cells (cMSCs) and canine endothelial progenitor cells (cEPCs) were isolated and characterized. Cell proliferation and attachment were demonstrated and the rate of cells proliferation on the VEGF released scaffold was significantly more than compared to the scaffolds with no VEGF loading. A significant increase in expression of COL1 and RUNX2 was indicated in the scaffolds loaded with VEGF and MSCs compared to the other groups. Consequently, PLGA coated β-TCP scaffold with sustained and localized release of VEGF showed favourable results for bone regeneration in vitro, and this scaffold has the potential to use as a drug delivery device in the future.


Materials | 2013

Synthesis and Characterization of Encapsulated Nanosilica Particles with an Acrylic Copolymer by in Situ Emulsion Polymerization Using Thermoresponsive Nonionic Surfactant

Mostafa Yazdimamaghani; Tannaz Pourvala; Elaheh Motamedi; Babak Fathi; Daryoosh Vashaee; Lobat Tayebi

Nanocomposites of encapsulated silica nanoparticles were prepared by in situ emulsion polymerization of acrylate monomers. The synthesized material showed good uniformity and dispersion of the inorganic components in the base polymer, which enhances the properties of the nanocomposite material. A nonionic surfactant with lower critical solution temperature (LCST) was used to encapsulate the silica nanoparticles in the acrylic copolymer matrix. This in situ method combined the surface modification and the encapsulation in a single pot, which greatly simplified the process compared with other conventional methods requiring separate processing steps. The morphology of the encapsulated nanosilica particles was investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM), which confirmed the uniform distribution of the nanoparticles without any agglomerations. A neat copolymer was also prepared as a control sample. Both the neat copolymer and the prepared nanocomposite were characterized by Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analyses (TGA), dynamic mechanical thermal analysis (DMTA) and the flame resistance test. Due to the uniform dispersion of the non-agglomerated nanoparticles in the matrix of the polymer, TGA and flame resistance test results showed remarkably improved thermal stability. Furthermore, DMTA results demonstrated an enhanced storage modulus of the nanocomposite samples compared with that of the neat copolymer, indicating its superior mechanical properties.


PLOS ONE | 2013

In vitro electrochemical corrosion and cell viability studies on nickel-free stainless steel orthopedic implants.

E. Salahinejad; Mohammad Jafar Hadianfard; Digby D. Macdonald; Samin Sharifi-Asl; Masoud Mozafari; Kenneth J. Walker; Armin Tahmasbi Rad; Sundararajan V. Madihally; Lobat Tayebi

The corrosion and cell viability behaviors of nanostructured, nickel-free stainless steel implants were studied and compared with AISI 316L. The electrochemical studies were conducted by potentiodynamic polarization and electrochemical impedance spectroscopic measurements in a simulated body fluid. Cytocompatibility was also evaluated by the adhesion behavior of adult human stem cells on the surface of the samples. According to the results, the electrochemical behavior is affected by a compromise among the specimens structural characteristics, comprising composition, density, and grain size. The cell viability is interpreted by considering the results of the electrochemical impedance spectroscopic experiments.

Collaboration


Dive into the Lobat Tayebi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daryoosh Vashaee

Oklahoma State University–Tulsa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Atul N. Parikh

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge