Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Farhat Habib is active.

Publication


Featured researches published by Farhat Habib.


Nucleic Acids Research | 2012

HIstome—a relational knowledgebase of human histone proteins and histone modifying enzymes

Satyajeet P. Khare; Farhat Habib; Rahul Sharma; Nikhil Gadewal; Sanjay Gupta; Sanjeev Galande

Histones are abundant nuclear proteins that are essential for the packaging of eukaryotic DNA into chromosomes. Different histone variants, in combination with their modification ‘code’, control regulation of gene expression in diverse cellular processes. Several enzymes that catalyze the addition and removal of multiple histone modifications have been discovered in the past decade, enabling investigations of their role(s) in normal cellular processes and diverse pathological conditions. This sudden influx of data, however, has resulted in need of an updated knowledgebase that compiles, organizes and presents curated scientific information to the user in an easily accessible format. Here, we present HIstome, a browsable, manually curated, relational database that provides information about human histone proteins, their sites of modifications, variants and modifying enzymes. HIstome is a knowledgebase of 55 human histone proteins, 106 distinct sites of their post-translational modifications (PTMs) and 152 histone-modifying enzymes. Entries have been grouped into 5 types of histones, 8 types of post-translational modifications and 14 types of enzymes that catalyze addition and removal of these modifications. The resource will be useful for epigeneticists, pharmacologists and clinicians. HIstome: The Histone Infobase is available online at http://www.iiserpune.ac.in/∼coee/histome/ and http://www.actrec.gov.in/histome/.


Infection, Genetics and Evolution | 2009

Evolution of drug resistance in multiple distinct lineages of H5N1 avian influenza.

Andrew W. Hill; Robert P. Guralnick; Meredith J.C. Wilson; Farhat Habib; Daniel Janies

Some predict that influenza A H5N1 will be the cause of a pandemic among humans. In preparation for such an event, many governments and organizations have stockpiled antiviral drugs such as oseltamivir (Tamiflu). However, it is known that multiple lineages of H5N1 are already resistant to another class of drugs, adamantane derivatives, and a few lineages are resistant to oseltamivir. What is less well understood is the evolutionary history of the mutations that confer drug resistance in the H5N1 population. In order to address this gap, we conducted phylogenetic analyses of 676 genomic sequences of H5N1 and used the resulting hypotheses as a basis for asking 3 molecular evolutionary questions: (1) Have drug-resistant genotypes arisen in distinct lineages of H5N1 through point mutation or through reassortment? (2) Is there evidence for positive selection on the codons that lead to drug resistance? (3) Is there evidence for covariation between positions in the genome that confer resistance to drugs and other positions, unrelated to drug resistance, that may be under selection for other phenotypes? We also examine how drug-resistant lineages proliferate across the landscape by projecting or phylogenetic analysis onto a virtual globe. Our results for H5N1 show that in most cases drug resistance has arisen by independent point mutations rather than reassortment or covariation. Furthermore, we found that some codons that mediate resistance to adamantane derivatives are under positive selection, but did not find positive selection on codons that mediate resistance to oseltamivir. Together, our phylogenetic methods, molecular evolutionary analyses, and geographic visualization provide a framework for analysis of globally distributed genomic data that can be used to monitor the evolution of drug resistance.


Cladistics | 2008

Evolution of genomes, host shifts and the geographic spread of SARS-CoV and related coronaviruses

Daniel Janies; Farhat Habib; Boyan Alexandrov; Andrew W. Hill; Diego Pol

Severe acute respiratory syndrome (SARS) is a novel human illness caused by a previously unrecognized coronavirus (CoV) termed SARS‐CoV. There are conflicting reports on the animal reservoir of SARS‐CoV. Many of the groups that argue carnivores are the original reservoir of SARS‐CoV use a phylogeny to support their argument. However, the phylogenies in these studies often lack outgroup and rooting criteria necessary to determine the origins of SARS‐CoV. Recently, SARS‐CoV has been isolated from various species of Chiroptera from China (e.g., Rhinolophus sinicus) thus leading to reconsideration of the original reservoir of SARS‐CoV. We evaluated the hypothesis that SARS‐CoV isolated from Chiroptera are the original zoonotic source for SARS‐CoV by sampling SARS‐CoV and non‐SARS‐CoV from diverse hosts including Chiroptera, as well as carnivores, artiodactyls, rodents, birds and humans. Regardless of alignment parameters, optimality criteria, or isolate sampling, the resulting phylogenies clearly show that the SARS‐CoV was transmitted to small carnivores well after the epidemic of SARS in humans that began in late 2002. The SARS‐CoV isolates from small carnivores in Shenzhen markets form a terminal clade that emerged recently from within the radiation of human SARS‐CoV. There is evidence of subsequent exchange of SARS‐CoV between humans and carnivores. In addition SARS‐CoV was transmitted independently from humans to farmed pigs (Sus scrofa). The position of SARS‐CoV isolates from Chiroptera are basal to the SARS‐CoV clade isolated from humans and carnivores. Although sequence data indicate that Chiroptera are a good candidate for the original reservoir of SARS‐CoV, the structural biology of the spike protein of SARS‐CoV isolated from Chiroptera suggests that these viruses are not able to interact with the human variant of the receptor of SARS‐CoV, angiotensin‐converting enzyme 2 (ACE2). In SARS‐CoV we study, both visually and statistically, labile genomic fragments and, putative key mutations of the spike protein that may be associated with host shifts. We display host shifts and candidate mutations on trees projected in virtual globes depicting the spread of SARS‐CoV. These results suggest that more sampling of coronaviruses from diverse hosts, especially Chiroptera, carnivores and primates, will be required to understand the genomic and biochemical evolution of coronaviruses, including SARS‐CoV.


Scientific Reports | 2011

Genome-level identification of targets of Hox protein Ultrabithorax in Drosophila : novel mechanisms for target selection

Pavan Agrawal; Farhat Habib; Ramesh Yelagandula; L. S. Shashidhara

Hox proteins are transcription factors and key regulators of segmental identity along the anterior posterior axis across all bilaterian animals. Despite decades of research, the mechanisms by which Hox proteins select and regulate their targets remain elusive. We have carried out whole-genome ChIP-chip experiments to identify direct targets of Hox protein Ultrabithorax (Ubx) during haltere development in Drosophila. Direct targets identified include upstream regulators or cofactors of Ubx. Homothorax, a cofactor of Ubx during embryonic development, is one such target and is required for normal specification of haltere. Although Ubx bound sequences are conserved amongst various insect genomes, no consensus Ubx-specific motif was detected. Surprisingly, binding motifs for certain transcription factors that function either upstream or downstream to Ubx are enriched in these sequences suggesting complex regulatory loops governing Ubx function. Our data supports the hypothesis that specificity during Hox target selection is achieved by associating with other transcription factors.


Cladistics | 2011

The Supramap project: linking pathogen genomes with geography to fight emergent infectious diseases

Daniel Janies; Travis W. Treseder; Boyan Alexandrov; Farhat Habib; Jennifer J. Chen; Renato Ferreira; Andrés Varón; Ward C. Wheeler

Novel pathogens have the potential to become critical issues of national security, public health and economic welfare. As demonstrated by the response to Severe Acute Respiratory Syndrome (SARS) and influenza, genomic sequencing has become an important method for diagnosing agents of infectious disease. Despite the value of genomic sequences in characterizing novel pathogens, raw data on their own do not provide the information needed by public health officials and researchers. One must integrate knowledge of the genomes of pathogens with host biology and geography to understand the etiology of epidemics. To these ends, we have created an application called Supramap (http://supramap.osu.edu) to put information on the spread of pathogens and key mutations across time, space and various hosts into a geographic information system (GIS). To build this application, we created a web service for integrated sequence alignment and phylogenetic analysis as well as methods to describe the tree, mutations, and host shifts in Keyhole Markup Language (KML). We apply the application to 239 sequences of the polymerase basic 2 (PB2) gene of recent isolates of avian influenza (H5N1). We map a mutation, glutamic acid to lysine at position 627 in the PB2 protein (E627K), in H5N1 influenza that allows for increased replication of the virus in mammals. We use a statistical test to support the hypothesis of a correlation of E627K mutations with avian‐mammalian host shifts but reject the hypothesis that lineages with E627K are moving westward. Data, instructions for use, and visualizations are included as supplemental materials at: http://supramap.osu.edu/sm/supramap/publications.


Bioinformatics | 2007

Large scale genotype–phenotype correlation analysis based on phylogenetic trees

Farhat Habib; Andrew D. Johnson; Ralf Bundschuh; Daniel Janies

We provide two methods for identifying changes in genotype that are correlated with changes in a phenotype implied by phylogenetic trees. The first method, VENN, works when the number of branches over which the change occurred are modest. VENN looks for genetic changes that are completely penetrant with phenotype changes on a tree. The second method, CCTSWEEP, allows for a partial matching between changes in phenotypes and genotypes and provides a score for each change using Maddisons concentrated changes test. The mutations that are highly correlated with phenotypic change can be ranked by score. We use these methods to find SNPs correlated with resistance to Bacillus anthracis in inbred mouse strains. Our findings are consistent with the current biological literature, and also suggest potential novel candidate genes.


Journal of the American Medical Informatics Association | 2006

An XML-based system for synthesis of data from disparate databases.

Tahsin M. Kurç; Daniel Janies; Andrew D. Johnson; Stephen Langella; Scott Oster; Shannon Hastings; Farhat Habib; Terry Camerlengo; David Ervin; Joel H. Saltz

Abstract Diverse data sets have become key building blocks of translational biomedical research. Data types captured and referenced by sophisticated research studies include high throughput genomic and proteomic data, laboratory data, data from imagery, and outcome data. In this paper, the authors present the application of an XML-based data management system to support integration of data from disparate data sources and large data sets. This system facilitates management of XML schemas and on-demand creation and management of XML databases that conform to these schemas. They illustrate the use of this system in an application for genotype–phenotype correlation analyses. This application implements a method of phenotype–genotype correlation based on phylogenetic optimization of large data sets of mouse SNPs and phenotypic data. The application workflow requires the management and integration of genomic information and phenotypic data from external data repositories and from the results of phenotype–genotype correlation analyses. Our implementation supports the process of carrying out a complex workflow that includes large-scale phylogenetic tree optimizations and application of Maddisons concentrated changes test to large phylogenetic tree data sets. The data management system also allows collaborators to share data in a uniform way and supports complex queries that target data sets.


Journal of Biosciences | 2015

Comparative sequence analyses of genome and transcriptome reveal novel transcripts and variants in the Asian elephant Elephas maximus

Puli Chandramouli Reddy; Ishani Sinha; Ashwin Kelkar; Farhat Habib; Saurabh J. Pradhan; Raman Sukumar; Sanjeev Galande

The Asian elephant Elephas maximus and the African elephant Loxodonta africana that diverged 5–7 million years ago exhibit differences in their physiology, behaviour and morphology. A comparative genomics approach would be useful and necessary for evolutionary and functional genetic studies of elephants. We performed sequencing of E. maximus and map to L. africana at ~15X coverage. Through comparative sequence analyses, we have identified Asian elephant specific homozygous, non-synonymous single nucleotide variants (SNVs) that map to 1514 protein coding genes, many of which are involved in olfaction. We also present the first report of a high-coverage transcriptome sequence in E. maximus from peripheral blood lymphocytes. We have identified 103 novel protein coding transcripts and 66-long non-coding (lnc)RNAs. We also report the presence of 181 protein domains unique to elephants when compared to other Afrotheria species. Each of these findings can be further investigated to gain a better understanding of functional differences unique to elephant species, as well as those unique to elephantids in comparison with other mammals. This work therefore provides a valuable resource to explore the immense research potential of comparative analyses of transcriptome and genome sequences in the Asian elephant.


Scientific Reports | 2016

A comparative genomic analysis of targets of Hox protein Ultrabithorax amongst distant insect species.

Naveen Prasad; Shreeharsha Tarikere; Dhanashree Khanale; Farhat Habib; L. S. Shashidhara

In the fruitfly Drosophila melanogaster, the differential development of wing and haltere is dependent on the function of the Hox protein Ultrabithorax (Ubx). Here we compare Ubx-mediated regulation of wing patterning genes between the honeybee, Apis mellifera, the silkmoth, Bombyx mori and Drosophila. Orthologues of Ubx are expressed in the third thoracic segment of Apis and Bombyx, although they make functional hindwings. When over-expressed in transgenic Drosophila, Ubx derived from Apis or Bombyx could suppress wing development, suggesting evolutionary changes at the level of co-factors and/or targets of Ubx. To gain further insights into such events, we identified direct targets of Ubx from Apis and Bombyx by ChIP-seq and compared them with those of Drosophila. While majority of the putative targets of Ubx are species-specific, a considerable number of wing-patterning genes are retained, over the past 300 millions years, as targets in all the three species. Interestingly, many of these are differentially expressed only between wing and haltere in Drosophila but not between forewing and hindwing in Apis or Bombyx. Detailed bioinformatics and experimental validation of enhancer sequences suggest that, perhaps along with other factors, changes in the cis-regulatory sequences of earlier targets contribute to diversity in Ubx function.


Systematic Biology | 2007

Genomic Analysis and Geographic Visualization of the Spread of Avian Influenza (H5N1)

Daniel Janies; Andrew W. Hill; Robert P. Guralnick; Farhat Habib; Eric Waltari; Ward C. Wheeler

Collaboration


Dive into the Farhat Habib's collaboration.

Top Co-Authors

Avatar

Daniel Janies

University of North Carolina at Charlotte

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew W. Hill

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert P. Guralnick

Florida Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar

Ward C. Wheeler

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar

L. S. Shashidhara

Centre for Cellular and Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Sanjeev Galande

Indian Institute of Science Education and Research

View shared research outputs
Top Co-Authors

Avatar

Andrés Varón

American Museum of Natural History

View shared research outputs
Researchain Logo
Decentralizing Knowledge