Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ralf Bundschuh is active.

Publication


Featured researches published by Ralf Bundschuh.


Journal of Virology | 2007

A Structured Viroid RNA Serves as a Substrate for Dicer-Like Cleavage To Produce Biologically Active Small RNAs but Is Resistant to RNA-Induced Silencing Complex-Mediated Degradation

Asuka Itaya; Xuehua Zhong; Ralf Bundschuh; Yijun Qi; Ying Wang; Ryuta Takeda; Ann R. Harris; Carlos Molina; Richard S. Nelson; Biao Ding

ABSTRACT RNA silencing is a potent means of antiviral defense in plants and animals. A hallmark of this defense response is the production of 21- to 24-nucleotide viral small RNAs via mechanisms that remain to be fully understood. Many viruses encode suppressors of RNA silencing, and some viral RNAs function directly as silencing suppressors as counterdefense. The occurrence of viroid-specific small RNAs in infected plants suggests that viroids can trigger RNA silencing in a host, raising the question of how these noncoding and unencapsidated RNAs survive cellular RNA-silencing systems. We address this question by characterizing the production of small RNAs of Potato spindle tuber viroid (srPSTVds) and investigating how PSTVd responds to RNA silencing. Our molecular and biochemical studies provide evidence that srPSTVds were derived mostly from the secondary structure of viroid RNAs. Replication of PSTVd was resistant to RNA silencing, although the srPSTVds were biologically active in guiding RNA-induced silencing complex (RISC)-mediated cleavage, as shown with a sensor system. Further analyses showed that without possessing or triggering silencing suppressor activities, the PSTVd secondary structure played a critical role in resistance to RISC-mediated cleavage. These findings support the hypothesis that some infectious RNAs may have evolved specific secondary structures as an effective means to evade RNA silencing in addition to encoding silencing suppressor activities. Our results should have important implications in further studies on RNA-based mechanisms of host-pathogen interactions and the biological constraints that shape the evolution of infectious RNA structures.


Journal of Clinical Oncology | 2014

Epigenetics Meets Genetics in Acute Myeloid Leukemia: Clinical Impact of a Novel Seven-Gene Score

Guido Marcucci; Pearlly S. Yan; Kati Maharry; David Frankhouser; Deedra Nicolet; Klaus H. Metzeler; Jessica Kohlschmidt; Krzysztof Mrózek; Yue Zhong Wu; Donna Bucci; John Curfman; Susan P. Whitman; Ann-Kathrin Eisfeld; Jason H. Mendler; Sebastian Schwind; Heiko Becker; Constance Bär; Andrew J. Carroll; Maria R. Baer; Meir Wetzler; Thomas H. Carter; Bayard L. Powell; Jonathan E. Kolitz; John C. Byrd; Christoph Plass; Ramiro Garzon; Michael A. Caligiuri; Richard Stone; Stefano Volinia; Ralf Bundschuh

PURPOSE Molecular risk stratification of acute myeloid leukemia (AML) is largely based on genetic markers. However, epigenetic changes, including DNA methylation, deregulate gene expression and may also have prognostic impact. We evaluated the clinical relevance of integrating DNA methylation and genetic information in AML. METHODS Next-generation sequencing analysis of methylated DNA identified differentially methylated regions (DMRs) associated with prognostic mutations in older (≥ 60 years) cytogenetically normal (CN) patients with AML (n = 134). Genes with promoter DMRs and expression levels significantly associated with outcome were used to compute a prognostic gene expression weighted summary score that was tested and validated in four independent patient sets (n = 355). RESULTS In the training set, we identified seven genes (CD34, RHOC, SCRN1, F2RL1, FAM92A1, MIR155HG, and VWA8) with promoter DMRs and expression associated with overall survival (OS; P ≤ .001). Each gene had high DMR methylation and lower expression, which were associated with better outcome. A weighted summary expression score of the seven gene expression levels was computed. A low score was associated with a higher complete remission (CR) rate and longer disease-free survival and OS (P < .001 for all end points). This was validated in multivariable models and in two younger (< 60 years) and two older independent sets of patients with CN-AML. Considering the seven genes individually, the fewer the genes with high expression, the better the outcome. Younger and older patients with no genes or one gene with high expression had the best outcomes (CR rate, 94% and 87%, respectively; 3-year OS, 80% and 42%, respectively). CONCLUSION A seven-gene score encompassing epigenetic and genetic prognostic information identifies novel AML subsets that are meaningful for treatment guidance.


Physical Biology | 2004

Translocation of structured polynucleotides through nanopores

Ulrich Gerland; Ralf Bundschuh; Terence Hwa

We investigate theoretically the translocation of structured RNA/DNA molecules through narrow pores which allow single but not double strands to pass. The unzipping of basepaired regions within the molecules presents significant kinetic barriers for the translocation process. We show that this circumstance may be exploited to determine the full basepairing pattern of polynucleotides, including RNA pseudoknots. The crucial requirement is that the translocation dynamics (i.e. the length of the translocated molecular segment) needs to be recorded as a function of time with a spatial resolution of a few nucleotides. This could be achieved, for instance, by applying a mechanical driving force for translocation and recording force-extension curves (FECs) with a device such as an atomic force microscope or optical tweezers. Our analysis suggests that, with this added spatial resolution, nanopores could be transformed into a powerful experimental tool to study the folding of nucleic acids.


Biophysical Journal | 2003

Fluctuations and Slow Variables in Genetic Networks

Ralf Bundschuh; F. Hayot; C. Jayaprakash

Computer simulations of large genetic networks are often extremely time consuming because, in addition to the biologically interesting translation and transcription reactions, many less interesting reactions like DNA binding and dimerizations have to be simulated. It is desirable to use the fact that the latter occur on much faster timescales than the former to eliminate the fast and uninteresting reactions and to obtain effective models of the slow reactions only. We use three examples of self-regulatory networks to show that the usual reduction methods where one obtains a system of equations of the Hill type fail to capture the fluctuations that these networks exhibit due to the small number of molecules; moreover, they may even miss describing the behavior of the average number of proteins. We identify the inclusion of fast-varying variables in the effective description as the cause for the failure of the traditional schemes. We suggest a different effective description, which entails the introduction of an additional species, not present in the original networks, that is slowly varying. We show that this description allows for a very efficient simulation of the reduced system while retaining the correct fluctuations and behavior of the full system. This approach ought to be applicable to a wide range of genetic networks.


Nucleic Acids Research | 2012

Regulation of the nucleosome unwrapping rate controls DNA accessibility

Justin A. North; John C. Shimko; Sarah Javaid; Alex M. Mooney; Matthew Shoffner; Sean D. Rose; Ralf Bundschuh; Richard Fishel; Jennifer J. Ottesen; Michael G. Poirier

Eukaryotic genomes are repetitively wrapped into nucleosomes that then regulate access of transcription and DNA repair complexes to DNA. The mechanisms that regulate extrinsic protein interactions within nucleosomes are unresolved. We demonstrate that modulation of the nucleosome unwrapping rate regulates protein binding within nucleosomes. Histone H3 acetyl-lysine 56 [H3(K56ac)] and DNA sequence within the nucleosome entry-exit region additively influence nucleosomal DNA accessibility by increasing the unwrapping rate without impacting rewrapping. These combined epigenetic and genetic factors influence transcription factor (TF) occupancy within the nucleosome by at least one order of magnitude and enhance nucleosome disassembly by the DNA mismatch repair complex, hMSH2–hMSH6. Our results combined with the observation that ∼30% of Saccharomyces cerevisiae TF-binding sites reside in the nucleosome entry–exit region suggest that modulation of nucleosome unwrapping is a mechanism for regulating transcription and DNA repair.


BioTechniques | 2012

Short-read, high-throughput sequencing technology for STR genotyping.

Bornman Dm; Hester Me; Schuetter Jm; Kasoji; Minard-Smith A; Barden Ca; Nelson Sc; Godbold Gd; Baker Ch; Yang B; Walther Je; Tornes Ie; Pearlly S. Yan; Benjamin Rodriguez; Ralf Bundschuh; Dickens Ml; Young Ba; Faith Sa

DNA-based methods for human identification principally rely upon genotyping of short tandem repeat (STR) loci. Electrophoretic-based techniques for variable-length classification of STRs are universally utilized, but are limited in that they have relatively low throughput and do not yield nucleotide sequence information. High-throughput sequencing technology may provide a more powerful instrument for human identification, but is not currently validated for forensic casework. Here, we present a systematic method to perform high-throughput genotyping analysis of the Combined DNA Index System (CODIS) STR loci using short-read (150 bp) massively parallel sequencing technology. Open source reference alignment tools were optimized to evaluate PCR-amplified STR loci using a custom designed STR genome reference. Evaluation of this approach demonstrated that the 13 CODIS STR loci and amelogenin (AMEL) locus could be accurately called from individual and mixture samples. Sensitivity analysis showed that as few as 18,500 reads, aligned to an in silico referenced genome, were required to genotype an individual (>99% confidence) for the CODIS loci. The power of this technology was further demonstrated by identification of variant alleles containing single nucleotide polymorphisms (SNPs) and the development of quantitative measurements (reads) for resolving mixed samples.


Physical Review E | 2002

Statistical mechanics of secondary structures formed by random RNA sequences

Ralf Bundschuh; Terence Hwa

The formation of secondary structures by a random RNA sequence is studied as a model system for the sequence-structure problem omnipresent in biopolymers. Several toy energy models are introduced to allow detailed analytical and numerical studies. First, a two-replica calculation is performed. By mapping the two-replica problem to the denaturation of a single homogeneous RNA molecule in six-dimensional embedding space, we show that sequence disorder is perturbatively irrelevant, i.e., an RNA molecule with weak sequence disorder is in a molten phase where many secondary structures with comparable total energy coexist. A numerical study of various models at high temperature reproduces behaviors characteristic of the molten phase. On the other hand, a scaling argument based on the external statistics of rare regions can be constructed to show that the low-temperature phase is unstable to sequence disorder. We performed a detailed numerical study of the low-temperature phase using the droplet theory as a guide, and characterized the statistics of large-scale, low-energy excitations of the secondary structures from the ground state structure. We find the excitation energy to grow very slowly (i.e., logarithmically) with the length scale of the excitation, suggesting the existence of a marginal glass phase. The transition between the low-temperature glass phase and the high-temperature molten phase is also characterized numerically. It is revealed by a change in the coefficient of the logarithmic excitation energy, from being disorder dominated to being entropy dominated.


Nucleic Acids Research | 2005

A statistical analysis of RNA folding algorithms through thermodynamic parameter perturbation

D. M. Layton; Ralf Bundschuh

Computational RNA secondary structure prediction is rather well established. However, such prediction algorithms always depend on a large number of experimentally measured parameters. Here, we study how sensitive structure prediction algorithms are to changes in these parameters. We found already that for changes corresponding to the actual experimental error to which these parameters have been determined, 30% of the structure are falsely predicted whereas the ground state structure is preserved under parameter perturbation in only 5% of all the cases. We establish that base-pairing probabilities calculated in a thermal ensemble are viable although not a perfect measure for the reliability of the prediction of individual structure elements. Here, a new measure of stability using parameter perturbation is proposed, and its limitations are discussed.


Biophysical Journal | 2003

Mechanically Probing the Folding Pathway of Single RNA Molecules

Ulrich Gerland; Ralf Bundschuh; Terence Hwa

We study theoretically the denaturation of single RNA molecules by mechanical stretching, focusing on signatures of the (un)folding pathway in molecular fluctuations. Our model describes the interactions between nucleotides by incorporating the experimentally determined free energy rules for RNA secondary structure, whereas exterior single-stranded regions are modeled as freely jointed chains. For exemplary RNA sequences (hairpins and the Tetrahymena thermophila group I intron), we compute the quasiequilibrium fluctuations in the end-to-end distance as the molecule is unfolded by pulling on opposite ends. Unlike the average quasiequilibrium force-extension curves, these fluctuations reveal clear signatures from the unfolding of individual structural elements. We find that the resolution of these signatures depends on the spring constant of the force-measuring device, with an optimal value intermediate between very rigid and very soft. We compare and relate our results to recent experiments by Liphardt et al. (2001).


Physical Review Letters | 2005

Coupled dynamics of RNA folding and nanopore translocation.

Ralf Bundschuh; Ulrich Gerland

The translocation of structured RNA or DNA molecules through narrow pores necessitates the opening of all base pairs. Here, we study the interplay between the dynamics of translocation and base pairing theoretically, using kinetic Monte Carlo simulations and analytical methods. We find that the transient formation of base pairs that do not occur in the ground state can significantly speed up translocation.

Collaboration


Dive into the Ralf Bundschuh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Terence Hwa

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge