Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Farida Nato is active.

Publication


Featured researches published by Farida Nato.


Scandinavian Journal of Infectious Diseases | 1993

Monoclonal antibodies for identification of Borrelia afzelii sp. nov. associated with late cutaneous manifestations of Lyme borreliosis.

Manuela Marin Canica; Farida Nato; Laurence du Merle; Jean Claude Mazie; Guy Baranton; Daniele Postic

Borrelia isolates associated with Lyme borreliosis were previously divided into 3 genospecies, B. burgdorferi sensu stricto, B. garinii and group VS461, on the basis of DNA homology. B. burgdorferi sensu stricto and B. garinii were identified by monoclonal antibodies (MAbs), H3TS and D6 respectively, but no MAbs were available to identify group VS461. Two MAbs were produced, I 17.3 and J 8.3 which reacted with OspB and OspA proteins, respectively, of strains belonging to group VS461, which should be named B. afzelii sp. nov. 24 strains were assigned to B. afzelii sp. nov., 11 of them being isolated from skin lesions, 6 from acrodermatitis chronica atrophicans (ACA) and 5 from erythema chronicum migrans (ECM). Although quite unknown in the USA, ACA has frequently been reported in northern Europe where B. afzelii sp. nov. is commonly isolated. This study documents the involvement of B. afzelii sp. nov. as a specific aetiological agent of ACA.


The Lancet | 2003

Development and testing of a rapid diagnostic test for bubonic and pneumonic plague

Suzanne Chanteau; Lila Rahalison; Lalao Ralafiarisoa; Jeanine Foulon; Mahery Ratsitorahina; Lala Ratsifasoamanana; Elisabeth Carniel; Farida Nato

BACKGROUND Plague is often fatal without prompt and appropriate treatment. It affects mainly poor and remote populations. Late diagnosis is one of the major causes of human death and spread of the disease, since it limits the effectiveness of control measures. We aimed to develop and assess a rapid diagnostic test (RDT) for plague. METHODS We developed a test that used monoclonal antibodies to the F1 antigen of Yersinia pestis. Sensitivity and specificity were assessed with a range of bacterial cultures and clinical samples, and compared with findings from available ELISA and bacteriological tests for plague. Samples from patients thought to have plague were tested with the RDT in the laboratory and by health workers in 26 pilot sites in Madagascar. FINDINGS The RDT detected concentrations of F1 antigen as low as 0.5 ng/mL in up to 15 min, and had a shelf life of 21 days at 60 degrees C. Its sensitivity and specificity were both 100%. RDT detected 41.6% and 31% more positive clinical specimens than did bacteriological methods and ELISA, respectively. The agreement rate between tests done at remote centres and in the laboratory was 89.8%. With the combination of bacteriological methods and F1 ELISA as reference standard, the positive and negative predictive values of the RDT were 90.6% and 86.7%, respectively. INTERPRETATION Our RDT is a specific, sensitive, and reliable test that can easily be done by health workers at the patients bedside, for the rapid diagnosis of pneumonic and bubonic plague. This test will be of key importance for the control of plague in endemic countries.


Molecular Microbiology | 1999

The 213‐amino‐acid leucine‐rich repeat region of the Listeria monocytogenes InlB protein is sufficient for entry into mammalian cells, stimulation of PI 3‐kinase and membrane ruffling

Laurence Braun; Farida Nato; Bernard Payrastre; Jean-Claude Mazie; Pascale Cossart

The Listeria monocytogenes InlB protein is a 630‐amino‐acid surface protein that mediates entry of the bacterium into a wide variety of cell types, including hepatocytes, fibroblasts and epithelial cells such as Vero, HEp‐2 and HeLa cells. Invasion stimulates host proteins tyrosine phosphorylation, PI 3‐kinase activity and rearrangements in the actin cytoskeleton. We previously showed that InlB is sufficient for entry of InlB‐coated latex beads into cells and recent results indicate that purified InlB can stimulate PI 3‐kinase activity and is thus the first bacterial agonist of this lipid kinase. In this study, we identified the region of InlB responsible for entry and stimulation of signal transduction events. Eight monoclonal antibodies directed against InlB were raised and, of those, five inhibited bacterial entry. These five antibodies recognized epitopes within the leucine‐rich repeat (LRR) region and/or the inter‐repeat (IR) region. InlB‐staphylococcal protein A (SPA) fusion proteins and recombinant InlB derivatives were generated and tested for their capacity to mediate entry into cultured mammalian cells. All the InlB derivatives that carried the amino‐terminal 213‐amino‐acid LRR region conferred invasiveness to the normally non‐invasive bacterium L. innocua or to inert latex beads and the corresponding purified polypeptides inhibited bacterial entry. In addition, the 213‐amino‐acid LRR region was able to stimulate PI 3‐kinase activity and changes in the actin cytoskeleton (membrane ruffling). These properties were not detected with purified internalin, another invasion protein of L. monocytogenes that displays LRRs similar to those of InlB. Taken together, these results show that the first 213 amino acids of InlB are critical for its specific properties.


Journal of Immunology | 2006

Characterization of Functional Oligosaccharide Mimics of the Shigella flexneri Serotype 2a O-Antigen: Implications for the Development of a Chemically Defined Glycoconjugate Vaccine

Armelle Phalipon; Corina Costachel; Cyrille Grandjean; Audrey Thuizat; Catherine Guerreiro; Myriam Tanguy; Farida Nato; Brigitte Vulliez-Le Normand; Frédéric Bélot; Karen Wright; Véronique Marcel-Peyre; Philippe J. Sansonetti; Laurence Mulard

Protection against reinfection with noncapsulated Gram-negative bacteria, such as Shigella, an enteroinvasive bacterium responsible for bacillary dysentery, is mainly achieved by Abs specific for the O-Ag, the polysaccharide part of the LPS, the major bacterial surface Ag. The use of chemically defined glycoconjugates encompassing oligosaccharides mimicking the protective determinants carried by the O-Ag, thus expected to induce an efficient anti-LPS Ab response, has been considered an alternative to detoxified LPS-protein conjugate vaccines. The aim of this study was to identify such functional oligosaccharide mimics of the S. flexneri serotype 2a O-Ag. Using protective murine mAbs specific for S. flexneri serotype 2a and synthetic oligosaccharides designed to analyze the contribution of each sugar residue of the branched pentasaccharide repeating unit of the O-Ag, we demonstrated that the O-Ag exhibited an immunodominant serotype-specific determinant. We also showed that elongating the oligosaccharide sequence improved Ab recognition. From these antigenicity data, selected synthetic oligosaccharides were assessed for their potential to mimic the O-Ag by analyzing their immunogenicity in mice when coupled to tetanus toxoid via single point attachment. Our results demonstrated that induction of an efficient serotype 2a-specific anti-O-Ag Ab response was dependent on the length of the oligosaccharide sequence. A pentadecasaccharide representing three biological repeating units was identified as a potential candidate for further development of a chemically defined glycoconjugate vaccine against S. flexneri 2a infection.


Molecular Microbiology | 1996

Internalin must be on the bacterial surface to mediate entry of Listeria monocytogenes into epithelial cells

Maryse Lebrun; J Mengaud; Hélène Ohayon; Farida Nato; Pascale Cossart

Entry of Listeria monocytogenes into cultured epithelial cells requires production of internalin, a protein with features characteristic of some Gram‐positive bacterial surface proteins, in particular an LPXTG motif preceding a hydrophobic sequence and a few basic residues at its C‐terminal end. By immunofluorescence and immunogold labelling, we show that in wild‐type L. monocytogenes, internalin is present on the cell surface and has a polarized distribution similar to that of ActA, another surface protein of L. monocytogenes involved in actin assembly. Through a genetic analysis, we establish that the C‐terminal region of internalin is necessary for cell‐surface association, and that although internalin is partially released in the culture medium, its location on the bacterial surface is required to promote entry. Finally, using a‘domain‐swapping’strategy ‐ replacement of the cell wall anchor of InIA by the membrane anchor of ActA ‐ we show that the reduced ability to adhere and enter cells of strains expressing InIA‐ActA correlates with a lower amount of surface‐exposed internalin. Taken together, these results suggest that internalin exposed on the bacterial surface mediates direct contact between the bacterium and the host cell.


Journal of Molecular Biology | 2003

Crystal Structure of a Fab Complex Formed with Pfmsp1-19, the C-Terminal Fragment of Merozoite Surface Protein 1 from Plasmodium Falciparum: A Malaria Vaccine Candidate

J.C Pizarro; Véronique Chitarra; D Verger; Inge Holm; Stéphane Petres; S Dartevelle; Farida Nato; Shirley Longacre; Graham A. Bentley

Merozoite surface protein 1 (MSP1) is the major protein component on the surface of the merozoite, the erythrocyte-invasive form of the malaria parasite Plasmodium. Present in all species of Plasmodium, it undergoes two distinct proteolytic maturation steps during the course of merozoite development that are essential for invasion of the erythrocyte. Antibodies specific for the C-terminal maturation product, MSP1-19, can inhibit erythrocyte invasion and parasite growth. This polypeptide is therefore considered to be one of the more promising malaria vaccine candidates. We describe here the crystal structure of recombinant MSP1-19 from P.falciparum (PfMSP1-19), the most virulent species of the parasite in humans, as a complex with the Fab fragment of the monoclonal antibody G17.12. This antibody recognises a discontinuous epitope comprising 13 residues on the first epidermal growth factor (EGF)-like domain of PfMSP1-19. Although G17.12 was raised against the recombinant antigen expressed in an insect cell/baculovirus system, it binds uniformly to the surface of merozoites from the late schizont stage, showing that the cognate epitope is exposed on the naturally occurring MSP1 polypeptide complex. Although the epitope includes residues that have been mapped to regions recognised by invasion-inhibiting antibodies studied by other workers, G17.12 does not inhibit erythrocyte invasion or MSP1 processing.


Clinical and Vaccine Immunology | 2003

One-Step Immunochromatographic Dipstick Tests for Rapid Detection of Vibrio cholerae O1 and O139 in Stool Samples

Farida Nato; A. Boutonnier; M. Rajerison; P. Grosjean; S. Dartevelle; A. Guénolé; N. A. Bhuiyan; David A. Sack; G. B. Nair; Jean-Michel Fournier; S. Chanteau

ABSTRACT We describe the development and evaluation of a rapid diagnostic test for Vibrio cholerae O1 and O139 based on lipopolysaccharide detection using gold particles. The specificity ranged between 84 and 100%. The sensitivity of the dipsticks ranged from 94.2 to 100% when evaluated with stool samples obtained in Madagascar and Bangladesh. The dipstick can provide a simple tool for epidemiological surveys.


Infection and Immunity | 2008

An In Vivo and In Vitro Model of Plasmodium falciparum Rosetting and Autoagglutination Mediated by varO, a Group A var Gene Encoding a Frequent Serotype

Inès Vigan-Womas; Micheline Guillotte; Sébastien Igonet; Stéphane Petres; Alexandre Juillerat; Cyril Badaut; Farida Nato; Achim Schneider; Anne Lavergne; Hugues Contamin; Adama Tall; Laurence Baril; Graham A. Bentley; Odile Mercereau-Puijalon

ABSTRACT In the Saimiri sciureus monkey, erythrocytes infected with the varO antigenic variant of the Plasmodium falciparum Palo Alto 89F5 clone bind uninfected red blood cells (rosetting), form autoagglutinates, and have a high multiplication rate, three phenotypic characteristics that are associated with severe malaria in human patients. We report here that varO parasites express a var gene having the characteristics of group A var genes, and we show that the varO Duffy binding-like 1α1 (DBL1α1) domain is implicated in the rosetting of both S. sciureus and human erythrocytes. The soluble varO N-terminal sequence (NTS)-DBL1α1 recombinant domain, produced in a baculovirus-insect cell system, induced high titers of antibodies that reacted with varO-infected red blood cells and disrupted varO rosettes. varO parasites were culture adapted in vitro using human erythrocytes. They formed rosettes and autoagglutinates, and they had the same surface serotype and expressed the same varO gene as the monkey-propagated parasites. To develop an in vitro model with highly homogeneous varO parasites, rosette purification was combined with positive selection by panning with a varO NTS-DBL1α1-specific mouse monoclonal antibody. The single-variant, clonal parasites were used to analyze seroprevalence for varO at the village level in a setting where malaria is holoendemic (Dielmo, Senegal). We found 93.6% (95% confidence interval, 89.7 to 96.4%) seroprevalence for varO surface-reacting antibodies and 86.7% (95% confidence interval, 82.8 to 91.6%) seroprevalence for the recombinant NTS-DBL1α1 domain, and virtually all permanent residents had seroconverted by the age of 5 years. These data imply that the varO model is a relevant in vivo and in vitro model for rosetting and autoagglutination that can be used for rational development of vaccine candidates and therapeutic strategies aimed at preventing malaria pathology.


Infection and Immunity | 2001

Preparation, Immunogenicity, and Protective Efficacy, in a Murine Model, of a Conjugate Vaccine Composed of the Polysaccharide Moiety of the Lipopolysaccharide of Vibrio cholerae O139 Bound to Tetanus Toxoid

Alain Boutonnier; Sylvain Villeneuve; Farida Nato; Bruno Dassy; Jean-Michel Fournier

ABSTRACT The epidemic and pandemic potential of Vibrio choleraeO139 is such that a vaccine against this newly emerged serogroup ofV. cholerae is required. A conjugate made of the polysaccharide moiety (O-specific polysaccharide plus core) of the lipopolysaccharide (LPS) of V. cholerae O139 (pmLPS) was prepared by derivatization of the pmLPS with adipic acid dihydrazide and coupling to tetanus toxoid (TT) by carbodiimide-mediated condensation. The immunologic properties of the conjugate were tested using BALB/c mice injected subcutaneously three times at 2 weeks interval and then a fourth time 4 weeks later. Mice were bled 7 days after each injection and then once each month for the following 6 months. LPS and TT antibody levels were determined by enzyme-linked immunosorbent assay using immunoplates coated with either O139 LPS or TT. Both pmLPS and pmLPS-TT conjugate elicited low levels of immunoglobulin M (IgM), peaking 5 weeks after the first immunization. The conjugate elicited high levels of IgG antibodies, peaking 3 months after the first immunization and declining slowly during the following 5 months. TT alone, or as a component of conjugate, induced mostly IgG antibodies. Antibodies elicited by the conjugate recognized both capsular polysaccharide and LPS from V. cholerae O139 and were vibriocidal. They were also protective in the neonatal mouse model of cholera infection. The conjugation of the O139 pmLPS, therefore, enhanced its immunogenicity and conferred T-dependent properties to this polysaccharide.


Biochimica et Biophysica Acta | 1999

The 7α-hydroxysteroids produced in human tonsils enhance the immune response to tetanus toxoid and Bordetella pertussis antigens

Pierre Lafaye; Valérie Chmielewski; Farida Nato; Jean-Claude Mazie; Robert Morfin

Human tonsils were assessed for their ability to 7alpha-hydroxylate pregnenolone (PREG), dehydroepiandrosterone (DHEA) and 3-epiandrosterone (EPIA). Both 7alpha-hydroxy-DHEA and 7alpha-hydroxy-EPIA were produced by homogenates of either whole tonsils or of lymphocyte-depleted tonsil fractions. In contrast, isolated lymphocytes were found to be unable to carry out 7alpha-hydroxylation. When co-cultures of tonsil-derived T and B lymphocytes were set up under stimulatory conditions, IgGs were released in the supernatants and could be quantitated, and immunomodulating properties of different steroids were monitored. When PREG was added to a mixture of tonsil-derived B and T lymphocytes, a decrease of non-specific and specific IgG was observed. An increase in specific anti-tetanus toxoid and anti-Bordetella pertussis antigen IgGs was obtained with either 1 microM 7alpha-hydroxy-DHEA or 1 microM 7alpha-hydroxy-EPIA. In contrast, DHEA and EPIA were unable to trigger such an effect. When cultures of isolated tonsillar B cells were used, none of the steroids tested showed significant effects on specific IgG productions. These data led to the conclusion that human tonsillar cells transform DHEA and EPIA, but not PREG, into 7alpha-hydroxylated metabolites. These metabolites could act on target tonsillar T lymphocytes which in turn act upon B lymphocytes for increasing specific IgG production.

Collaboration


Dive into the Farida Nato's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roland Bourrillon

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge