Farouk Nouizi
University of California, Irvine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Farouk Nouizi.
Physics in Medicine and Biology | 2015
Hakan Erkol; Farouk Nouizi; Mehmet Burcin Unlu; Gultekin Gulsen
In this work, we introduce an analytical method to solve the diffusion equation in a cylindrical geometry. This method is based on an integral approach to derive the Greens function for specific boundary conditions. Using our approach, we obtain comprehensive analytical solutions with the Robin boundary condition for diffuse optical imaging in both two and three dimensions. The solutions are expressed in terms of the optical properties of tissue and the amplitude and position of the light source. Our method not only works well inside the tissue but provides very accurate results near the tissue boundaries as well. The results obtained by our method are first compared with those obtained by a conventional analytical method then validated using numerical simulations. Our new analytical method allows not only implementation of any boundary condition for a specific problem but also fast simulation of light propagation making it very suitable for iterative image reconstruction algorithms.
Proceedings of SPIE | 2013
Patrick Poulet; Wilfried Uhring; Walter Hanselmann; René Glazenborg; Farouk Nouizi; Virginie Zint; Werner Hirschi
A time-resolved, spectroscopic, diffuse optical tomography device was assembled for clinical applications like brain functional imaging. The entire instrument lies in a unique setup that includes a light source, an ultrafast time-gated intensified camera and all the electronic control units. The light source is composed of four near infrared laser diodes driven by a nanosecond electrical pulse generator working in a sequential mode at a repetition rate of 100 MHz. The light pulses are less than 80 ps FWHM. They are injected in a four-furcated optical fiber ended with a frontal light distributor to obtain a uniform illumination spot directed towards the head of the patient. Photons back-scattered by the subject are detected by the intensified CCD camera. There are resolved according to their time of flight inside the head. The photocathode is powered by an ultrafast generator producing 50 V pulses, at 100 MHz and a width corresponding to a 200 ps FWHM gate. The intensifier has been specially designed for this application. The whole instrument is controlled by an FPGA based module. All the acquisition parameters are configurable via software through an USB plug and the image data are transferred to a PC via an Ethernet link. The compactness of the device makes it a perfect device for bedside clinical applications. The instrument will be described and characterized. Preliminary data recorded on test samples will be presented.
Journal of Biomedical Optics | 2016
Farouk Nouizi; Alex T. Luk; Dave Thayer; Yu-Ting Lin; Seunghoon Ha; Gultekin Gulsen
Abstract. We present experimental results that validate our imaging technique termed photomagnetic imaging (PMI). PMI illuminates the medium under investigation with a near-infrared light and measures the induced temperature increase using magnetic resonance imaging. A multiphysics solver combining light and heat propagation is used to model spatiotemporal distribution of temperature increase. Furthermore, a dedicated PMI reconstruction algorithm has been developed to reveal high-resolution optical absorption maps from temperature measurements. Being able to perform measurements at any point within the medium, PMI overcomes the limitations of conventional diffuse optical imaging. We present experimental results obtained on agarose phantoms mimicking biological tissue with inclusions having either different sizes or absorption contrasts, located at various depths. The reconstructed images show that PMI can successfully resolve these inclusions with high resolution and recover their absorption coefficient with high-quantitative accuracy. Even a 1-mm inclusion located 6-mm deep is recovered successfully and its absorption coefficient is underestimated by only 32%. The improved PMI system presented here successfully operates under the maximum skin exposure limits defined by the American National Standards Institute, which opens up the exciting possibility of its future clinical use for diagnostic purposes.
Physics in Medicine and Biology | 2016
Farouk Nouizi; Hakan Erkol; Alex T. Luk; Michael B. Marks; Mehmet Burcin Unlu; Gultekin Gulsen
We previously introduced photo-magnetic imaging (PMI), an imaging technique that illuminates the medium under investigation with near-infrared light and measures the induced temperature increase using magnetic resonance thermometry (MRT). Using a multiphysics solver combining photon migration and heat diffusion, PMI models the spatiotemporal distribution of temperature variation and recovers high resolution optical absorption images using these temperature maps. In this paper, we present a new fast non-iterative reconstruction algorithm for PMI. This new algorithm uses analytic methods during the resolution of the forward problem and the assembly of the sensitivity matrix. We validate our new analytic-based algorithm with the first generation finite element method (FEM) based reconstruction algorithm previously developed by our team. The validation is performed using, first synthetic data and afterwards, real MRT measured temperature maps. Our new method accelerates the reconstruction process 30-fold when compared to a single iteration of the FEM-based algorithm.
Biomedical Optics Express | 2016
Farouk Nouizi; Hakan Erkol; Alex T. Luk; Mehmet Burcin Unlu; Gultekin Gulsen
We previously introduced a new high resolution diffuse optical imaging modality termed, photo-magnetic imaging (PMI). PMI irradiates the object under investigation with near-infrared light and monitors the variations of temperature using magnetic resonance thermometry (MRT). In this paper, we present a real-time PMI image reconstruction algorithm that uses analytic methods to solve the forward problem and assemble the Jacobian matrix much faster. The new algorithm is validated using real MRT measured temperature maps. In fact, it accelerates the reconstruction process by more than 250 times compared to a single iteration of the FEM-based algorithm, which opens the possibility for the real-time PMI.
Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS) | 2018
Farouk Nouizi; Alex T. Luk; Mehrnaz Mehrabi; Burcin Unlu; Gultekin Gulsen
In this study, we develop an analytical based simulation method to determine laser parameters such as laser power and its duration for laser induced thermal ablation. This method utilizes two important physical approaches to model i) the light propagation and ii) the change in temperature due to the laser absorption in turbid media. First, the photon density is obtained analytically from the solution of the diffusion equation by deriving a special Greens’ function. Next, the Pennes bio-heat equation is solved analytically for a source term consisting of the product of the photon density and the optical absorption coefficient. Our approach is validated with the results obtained by Finite Element Method (FEM) and experimental results acquired from the gold-nanoparticle embedded phantom.
Proceedings of SPIE | 2017
Pei-An Lo; Jaedu Cho; Farouk Nouizi; Huihua Kenny Chiang; Gultekin Gulsen
Fluorescence diffuse optical tomography (FDOT) has been widely used for in vivo small animal studies and the illposed problem in reconstruction can be eased by utilizing structural a priori obtained from an anatomic imaging modality. In this study, a multispectral fluorescence tomography (FT) is used, which has shown the ability to detect subtle shifts in the ICG absorption spectrum in our previous study. The imaging system is in trans-illumination mode with a swept-wavelength laser and a CCD on a rotation gantry and the structural image from the X-ray computed tomography is used to guide and constrain the FT reconstruction algorithm. In this work, a phantom with two inclusions filled with different fluorophores is utilized to evaluate whether the spectral information obtained using sweptwavelength laser can distinguish these two inclusions. The images are captured from 8 different views with three different wavelengths.
Applied Optics | 2017
Jessica Ruiz; Farouk Nouizi; Jaedu Cho; Jie Zheng; Yifan Li; Jeon-Hor Chen; Min-Ying Su; Gultekin Gulsen
We present the feasibility of structured-light-based diffuse optical tomography (DOT) to quantify the breast density with an extensive simulation study. This study is performed on multiple numerical breast phantoms built from magnetic resonance imaging (MRI) images. These phantoms represent realistic tissue morphologies and are given typical breast optical properties. First, synthetic data are simulated at five wavelengths using our structured-light-based DOT forward problem. Afterwards, the inverse problem is solved to obtain the absorption images and subsequently the chromophore concentration maps. Parameters, such as segmented volumes and mean concentrations, are extracted from these maps and used in a regression model to estimate the percent breast densities. These estimations are correlated with the true values from MRI, r=0.97, showing that our new technique is promising in measuring breast density.
Proceedings of SPIE | 2016
Tiffany C. Kwong; Pei-An Lo; Jaedu Cho; Farouk Nouizi; Huihua Kenny Chiang; Chang-Seok Kim; Gultekin Gulsen
The strong scattering and absorption of light in biological tissue makes it challenging to model the propagation of light, especially in deep tissue. This is especially true in fluorescent tomography, which aims to recover the internal fluorescence source distribution from the measured light intensities on the surface of the tissue. The inherently ill-posed and underdetermined nature of the inverse problem along with strong tissue scattering makes Fluorescence Tomography (FT) extremely challenging. Previously, multispectral detection fluorescent tomography (FT) has been shown to improve the image quality of FT by incorporating the spectral filtering of biological tissue to provide depth information to overcome the inherent absorption and scattering limitations. We investigate whether multi-wavelength fluorescent tomography can be used to distinguish the signals from multiple fluorophores with overlapping fluorescence spectrums using a unique near-infrared (NIR) swept laser. In this work, a small feasibility study was performed to see whether multi-wavelength FT can be used to detect subtle shifts in the absorption spectrum due to differences in fluorophore microenvironment.
Proceedings of SPIE | 2016
Alex T. Luk; Farouk Nouizi; Michael B. Marks; Turkay Kart; Gultekin Gulsen
One major advantage of using gold nanoparticles is the possibility of tuning their absorption peak by modifying their surface plasma resonance. They are proven to be a promising multi-functional platform that can be used for many imaging and therapeutic applications. As a true multi-modality imaging technique, Photo-Magnetic Imaging (PMI) has a great potential to monitor the distribution of gold nanoparticles non-invasively with MR resolution. With a simple addon of a continuous wave laser to an MRI system, PMI uses the laser induced temperature increase, measured by MR Thermometry (MRT), to provide tissue optical absorption maps at MR resolution. PMI utilizes a Finite Element Method (FEM) based algorithm to solve the combined diffusion and bio-heat equations. This system of combined equations models the photon distribution in the tissue and heat generation due to the absorption of the light and consequent heat diffusion. The key characteristic of PMI is that its spatial resolution is preserved at any depth as long as the temperature change within the imaged medium is detectable by MRT. Agar phantoms containing gold nanoparticles are used to validate the ability of PMI in monitoring their distribution. To make PMI suitable for diagnostic purposes, the laser powers has been kept under the American National Standard Institute maximum skin exposure limits in this study.