Jaedu Cho
University of California, Irvine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jaedu Cho.
Measurement Science and Technology | 2014
Kim Hj; Jaedu Cho; Young-Ouk Noh; Min-Cheol Oh; Zhongping Chen; Chang-Seok Kim
We developed an optical frequency domain imaging (OFDI) system based on an integrated thermo-optic swept laser to achieve three-dimensional surface imaging. The wavelength was swept by applying a heating signal to a thermo-optic polymeric waveguide. The sub-micrometer surface profile was converted from the three-dimensional phase information of the OFDI system on various samples used as resolution targets with a step height of 120 nm.
Laser Physics | 2014
Jaedu Cho; Gultekin Gulsen; Chang-Seok Kim
The isosbestic point of oxy- and deoxy-hemoglobin at 800 nm is an important point in biomedical optical spectroscopic imaging. We have developed a novel swept laser centered at 800 nm and demonstrated its performance for spectroscopic optical coherence tomography. The measured −10 dB spectral bandwidth of the swept laser was 40 nm and averaged laser output power per sweep was 4 mW. This swept laser was incorporated into our OCT system and used to measure non-scattering liquid phantoms and blood samples. The measured maximum sensitivity and roll-off rate over a range of image depths were 112 dB and − 1.45 dB mm−1, respectively. The minimum axial resolution of the OCT system was 8.06 μm at a depth of 2.4 mm. Quantitative and localized absorption spectra were recovered from the non-scattering liquid phantoms. In addition, the measured localized wavelength-dependent attenuation difference of oxygenated and deoxygenated blood was 4.6-fold.
Sensors | 2017
Hansol Jang; Gukbin Lim; Keum-Shik Hong; Jaedu Cho; Gultekin Gulsen; Chang-Seok Kim
Diffuse optical tomography (DOT) has been studied for use in the detection of breast cancer, cerebral oxygenation, and cognitive brain signals. As optical imaging studies have increased significantly, acquiring imaging data in real time has become increasingly important. We have developed frequency-division multiplexing (FDM) DOT systems to analyze their performance with respect to acquisition time and imaging quality, in comparison with the conventional time-division multiplexing (TDM) DOT. A large tomographic area of a cylindrical phantom 60 mm in diameter could be successfully reconstructed using both TDM DOT and FDM DOT systems. In our experiment with 6 source-detector (S-D) pairs, the TDM DOT and FDM DOT systems required 6.18 and 1 s, respectively, to obtain a single tomographic data set. While the absorption coefficient of the reconstruction image was underestimated in the case of the FDM DOT, we experimentally confirmed that the abnormal region can be clearly distinguished from the background phantom using both methods.
Proceedings of SPIE | 2017
Pei-An Lo; Jaedu Cho; Farouk Nouizi; Huihua Kenny Chiang; Gultekin Gulsen
Fluorescence diffuse optical tomography (FDOT) has been widely used for in vivo small animal studies and the illposed problem in reconstruction can be eased by utilizing structural a priori obtained from an anatomic imaging modality. In this study, a multispectral fluorescence tomography (FT) is used, which has shown the ability to detect subtle shifts in the ICG absorption spectrum in our previous study. The imaging system is in trans-illumination mode with a swept-wavelength laser and a CCD on a rotation gantry and the structural image from the X-ray computed tomography is used to guide and constrain the FT reconstruction algorithm. In this work, a phantom with two inclusions filled with different fluorophores is utilized to evaluate whether the spectral information obtained using sweptwavelength laser can distinguish these two inclusions. The images are captured from 8 different views with three different wavelengths.
Applied Optics | 2017
Jessica Ruiz; Farouk Nouizi; Jaedu Cho; Jie Zheng; Yifan Li; Jeon-Hor Chen; Min-Ying Su; Gultekin Gulsen
We present the feasibility of structured-light-based diffuse optical tomography (DOT) to quantify the breast density with an extensive simulation study. This study is performed on multiple numerical breast phantoms built from magnetic resonance imaging (MRI) images. These phantoms represent realistic tissue morphologies and are given typical breast optical properties. First, synthetic data are simulated at five wavelengths using our structured-light-based DOT forward problem. Afterwards, the inverse problem is solved to obtain the absorption images and subsequently the chromophore concentration maps. Parameters, such as segmented volumes and mean concentrations, are extracted from these maps and used in a regression model to estimate the percent breast densities. These estimations are correlated with the true values from MRI, r=0.97, showing that our new technique is promising in measuring breast density.
Proceedings of SPIE | 2016
Tiffany C. Kwong; Pei-An Lo; Jaedu Cho; Farouk Nouizi; Huihua Kenny Chiang; Chang-Seok Kim; Gultekin Gulsen
The strong scattering and absorption of light in biological tissue makes it challenging to model the propagation of light, especially in deep tissue. This is especially true in fluorescent tomography, which aims to recover the internal fluorescence source distribution from the measured light intensities on the surface of the tissue. The inherently ill-posed and underdetermined nature of the inverse problem along with strong tissue scattering makes Fluorescence Tomography (FT) extremely challenging. Previously, multispectral detection fluorescent tomography (FT) has been shown to improve the image quality of FT by incorporating the spectral filtering of biological tissue to provide depth information to overcome the inherent absorption and scattering limitations. We investigate whether multi-wavelength fluorescent tomography can be used to distinguish the signals from multiple fluorophores with overlapping fluorescence spectrums using a unique near-infrared (NIR) swept laser. In this work, a small feasibility study was performed to see whether multi-wavelength FT can be used to detect subtle shifts in the absorption spectrum due to differences in fluorophore microenvironment.
Proceedings of SPIE | 2016
Jaedu Cho; Chang-Seok Kim; Gultekin Gulsen
Near-infrared fluorescence imaging (NIRF) is a powerful wide-field optical imaging tool that has a potential to visualize molecular-specific exogenous fluorescence agents, such as FDA approved Indocyanine Green (ICG), in thick tissue. Indeed, ICG is sensitive to biochemical environment such that it can be used to detect micro- or macroscopic environmental changes in tissue by solvatochromic shift that is defined by the dependence of absorption and emission spectra with the solvent polarity. For example, dimethyl sulfoxide (DMSO) is a very powerful drug carrier that can penetrate biological barriers such as the skin, the membranes, and the blood-brain-barrier. In presence of DMSO, ICG in tissue shows the excitation blue shift. However, NIRF imaging of microenvironment dependent changes of ICG has been challenging for the following reasons. First, the Stoke’s shift of ICG is too small to separate the excitation and emission spectra easily. Second, the solvatochromic shift of ICG is too small to be detected by conventional NIRF techniques. Last but not least, the multiple scattering in tissue degrades not only the spatial information but also the spectral contents by the red-shift. We developed a wavelength-swept laser-based NIRF system that can resolve the excitation shift of ICG in tissue such that DMSO can be indirectly visualized. We plan to conduct an in-vivo lymph-node drug-delivery study in a mouse model to show feasibility of the indirect imaging of the drug-carrier with the wavelength-swept-laser based NIRF system.
Proceedings of SPIE | 2016
Jessica Kwong; Farouk Nouizi; Jaedu Cho; Jie Zheng; Yifan Li; Jeon-Hor Chen; Min-Ying Su; Gultekin Gulsen
Breast density is an independent risk factor for breast cancer, where women with denser breasts are more likely to develop cancer. By identifying women at higher risk, healthcare providers can suggest screening at a younger age to effectively diagnose and treat breast cancer in its earlier stages. Clinical risk assessment models currently do not incorporate breast density, despite its strong correlation with breast cancer. Current methods to measure breast density rely on mammography and MRI, both of which may be difficult to use as a routine risk assessment tool. We propose to use diffuse optical tomography with structured-light to measure the dense, fibroglandular (FGT) tissue volume, which has a different chromophore signature than the surrounding adipose tissue. To test the ability of this technique, we performed simulations by creating numerical breast phantoms from segmented breast MR images. We looked at two different cases, one with a centralized FGT distribution and one with a dispersed distribution. As expected, the water and lipid volumes segmented at half-maximum were overestimated for the dispersed case. However, it was noticed that the recovered water and lipid concentrations were lower and higher, respectively, than the centralized case. This information may provide insight into the morphological distribution of the FGT and can be a correction in estimating the breast density.
Proceedings of SPIE | 2015
Jie Zheng; Farouk Nouizi; Jaedu Cho; Jessica Kwong; Gultekin Gulsen
We are developing a ballistic-photon based approach for improving the spatial resolution of fluorescence tomography using time-domain measurements. This approach uses early photon information contained in measured time-of-fight distributions originating from fluorescence emission. The time point spread functions (TPSF) from both excitation light and emission light are acquired with gated single photon Avalanche detector (SPAD) and time-correlated single photon counting after a short laser pulse. To determine the ballistic photons for reconstruction, the lifetime of the fluorophore and the time gate from the excitation profiles will be used for calibration, and then the time gate of the fluorescence profile can be defined by a simple time convolution. By mimicking first generation CT data acquisition, the sourcedetector pair will translate across and also rotate around the subject. The measurement from each source-detector position will be reshaped into a histogram that can be used by a simple back-projection algorithm in order to reconstruct high resolution fluorescence images. Finally, from these 2D sectioning slides, a 3D inclusion can be reconstructed accurately. To validate the approach, simulation of light transport is performed for biological tissue-like media with embedded fluorescent inclusion by solving the diffusion equation with Finite Element Method using COMSOL Multiphysics simulation. The reconstruction results from simulation studies have confirmed that this approach drastically improves the spatial resolution of fluorescence tomography. Moreover, all the results have shown the feasibility of this technique for high resolution small animal imaging up to several centimeters.
Proceedings of SPIE | 2015
Farouk Nouizi; Tiffany C. Kwong; Jessica Kwong; Jaedu Cho; Yuwen Chan; Uma Sampathkumaran; Yue Zhu; Maksudul M. Alam; Gultekin Gulsen
Fluorescence tomography is a non invasive, non ionizing imaging technique able to provide a 3D distribution of fluorescent agents within thick highly scattering mediums, using low cost instrumentation. However, its low spatial resolution due to undetermined and ill-posed nature of its inverse problem has delayed its integration into the clinical settings. In addition, the quality of the fluorescence tomography images is degraded due to the excitation light leakage contaminating the fluorescence measurements. This excitation light leakage results from the excitation photons that cannot be blocked by the fluorescence filters. In this contribution, we present a new method to remove this excitation light leakage noise based on the use of a temperature sensitive fluorescence agents. By performing different sets of measurements using this temperature sensitive agents at multiple temperatures, the excitation light leakage can be estimated and then removed from the measured fluorescence signals . The results obtained using this technique demonstrate its potential for use in in-vivo small animal imaging.