Farshad A. Mansouri
RIKEN Brain Science Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Farshad A. Mansouri.
Nature Reviews Neuroscience | 2009
Farshad A. Mansouri; Keiji Tanaka; Mark J. Buckley
The behavioural adjustment that follows the experience of conflict has been extensively studied in humans, leading to influential models of executive-control adjustment. Recent studies have revealed striking similarities in conflict-induced behavioural adjustment between humans and monkeys, indicating that monkeys can provide a model to study the underlying neural substrates and mechanisms of such behaviour. These studies have advanced our knowledge about the role of different prefrontal brain regions, including the anterior cingulate cortex (ACC) and the dorsolateral prefrontal cortex (DLPFC), in executive-control adjustment and suggest a pivotal role for the DLPFC in the dynamic tuning of executive control and, consequently, in behavioural adaptation to changing environments.
Science | 2009
Mark J. Buckley; Farshad A. Mansouri; Hassan Hoda; Majid Mahboubi; Philip G. F. Browning; Sze Chai Kwok; Adam Phillips; Keiji Tanaka
Card Sorting Monkeys Single-neuron studies in primates help to establish a detailed understanding of cognitive processing and to provide an experimental base for understanding the cognitive deficits incurred by patients who have suffered damage to areas of the brain. Buckley et al. (p. 52) present the results of an intensive behavioral analysis of a group of monkeys bearing lesions to distinct areas of the prefrontal lobe. The Wisconsin Card Sorting Task is widely used in the clinic to assess the flexible learning of abstract rules. In the primates, a functional dissociation was observed across three regions: the principal sulcus, the orbitofrontal cortex, and the anterior cingulate cortex. This set of results contributes to the ongoing discussion of goal-directed behavior and serves to bridge neuropsychological studies in human patients and neurophysiological studies in primates. A card-sorting task shows that three distinct regions of the monkey prefrontal cortex perform distinct cognitive functions. Much of our behavior is guided by rules. Although human prefrontal cortex (PFC) and anterior cingulate cortex (ACC) are implicated in implementing rule-guided behavior, the crucial contributions made by different regions within these areas are not yet specified. In an attempt to bridge human neuropsychology and nonhuman primate neurophysiology, we report the effects of circumscribed lesions to macaque orbitofrontal cortex (OFC), principal sulcus (PS), superior dorsolateral PFC, ventrolateral PFC, or ACC sulcus, on separable cognitive components of a Wisconsin Card Sorting Test (WCST) analog. Only the PS lesions impaired maintenance of abstract rules in working memory; only the OFC lesions impaired rapid reward-based updating of representations of rule value; the ACC sulcus lesions impaired active reference to the value of recent choice-outcomes during rule-based decision-making.
The Journal of Neuroscience | 2006
Farshad A. Mansouri; Kenji Matsumoto; Keiji Tanaka
The cognitive flexibility to select appropriate rules in a changing environment is essential for survival and is assumed to depend on the integrity of prefrontal cortex (PFC). To explore the contribution of the dorsolateral PFC to flexible rule-based behavior, we recorded the activity of cells in this region of monkeys performing a Wisconsin Card Sorting Test (WCST) analog. The monkey had to match a sample to one of three test items by either color or shape. Liquid reward and a discrete visual signal (error signal) were given as feedback to correct and incorrect target selections, respectively. The relevant rule and its frequent changes were not cued, and the monkeys could find it only by interpreting the feedback. In one-third of cells, cellular activity was modulated by the relevant rule, both throughout the trial and between trials. The magnitude of the modulation correlated with the number of errors that the monkeys committed after each rule change in the course of reestablishing high performance. Activity of other cells differed between correct and error trials independently from the rule-related modulation. This difference appeared during actual responses and before the monkeys faced the problems. Many PFC cells responded to the error-signal presentation, and, in some of them, the magnitude of response depended on the relevant rule. These results suggest that the dorsolateral PFC contributes to WCST performance by maintaining the relevant rule across trials, assessing behavioral outcomes, and monitoring the processes that could lead to success and failure in individual trials.
Brain Research | 1999
Farshad A. Mansouri; Fereshteh Motamedi; Yaghoub Fathollahi
In this study, the effects of chronic morphine administration (20-30 days) on long-term potentiation (LTP) were investigated at the Schaffer collateral-CA1 pyramidal cell synapses of the rat hippocampal slices. Orthodromic population spike (OPS) amplitude and delay (peak latency) were measured as indices of increase in synaptic efficacy. The amounts of LTP of OPS delay and LTP of OPS amplitude were higher in slices from dependent rats. Perfusion of slices from control and dependent rats with morphine containing ACSF and delivering tetanic stimulation, showed that short-term presence of morphine could not mimic the LTP enhancing effects of chronic morphine administration, however, attenuated the amount of LTP of OPS amplitude in slices of dependent rats. This study supports the hypothesis that the susceptibility of CA1 synapses to plastic changes increases by chronic, not acute exposure to morphine and suggests that a withdrawal phenomenon might be an underlying mechanism for the observed augmented LTP of OPS amplitude in slices of dependent rats.
Brain Research | 1997
Farshad A. Mansouri; Fereshteh Motamedi; Yaghoub Fathollahi; Nafiseh Atapour; Saeed Semnanian
The effects of chronic morphine administration on the development of Long-term potentiation (LTP) were investigated at the Schaffer collateral-CA1 pyramidal cell synapses of the rat hippocampal slices using primed-bursts tetanic stimulation. Significant enhancement of orthodromic population spike (OPS) was found for all stimulus intensities after tetanic stimulation. OPS enhancement was greatest when tested with low to mid-range stimulus intensities (25 and 50 microA). There was also significant decrease in OPS delay. These responses were similar in slices from both control and morphine dependent rats. At all delivered stimulus intensities, the amount of LTP of OPS in slices from dependent rats was larger than that of control slices. However, these differences in LTP of OPS were significant at low stimulus intensities. These findings suggest that chronic morphine administration had induced changes in CA1 neurocircuitry which modulated synaptic plasticity during high frequency stimulation and appeared as augmented LTP.
Brain Research | 1998
Ali Pourmotabbed; Fereshteh Motamedi; Yaghoub Fathollahi; Farshad A. Mansouri; Saeed Semnanian
The involvement of NMDA receptors and voltage-dependent calcium channels on augmentation of long-term potentiation (LTP) was investigated at the Schaffer collateral-CA1 pyramidal cell synapses in hippocampal slices of morphine dependent rats, using primed-bursts tetanic stimulation. The amplitude of population spike was measured as an index of increase in postsynaptic excitability. d, l-AP5 and nifedipine were used as NMDA receptor antagonist and voltage-dependent calcium channel blocker, respectively. The amount of LTP of orthodromic population spike amplitude was higher in slices from dependent rats. Perfusion of slices from control or dependent rats with ACSF containing either D,L-AP5 (25 microM) or nifedipine (10 microM) and delivering tetanic stimulation, showed that D,L-AP5 completely blocked LTP of OPS in slices from both control and dependent rats, while nifedipine attenuated the amount of LTP of OPS in dependent slices and had no effect on control ones. The results suggest that the enhanced LTP of OPS in the CA1 area of hippocampal slices from morphine dependent rats is primarily induced by the NMDA receptors activity and the voltage-dependent calcium channels may also be partially involved in the phenomenon.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Farshad A. Mansouri; Mark J. Buckley; Majid Mahboubi; Keiji Tanaka
Significance Frontal pole cortex (FPC) refers to the most anterior part of prefrontal cortex, a region that is highly developed in anthropoid primates. However, because of technical difficulties in studying this area, its role in primate cognition had remained largely unknown. We studied effects of selective bilateral lesions within FPC on monkeys’ cognitive flexibility. FPC lesion did not impair the performance in well-learned cognitively demanding tasks. However, FPC-lesioned monkeys remained more focused than control monkeys in exploiting the current task when they faced newly introduced interruptions by a simple secondary task or free rewards. This unique pattern of behavioral changes in FPC-lesioned monkeys suggests that FPC is involved in redistribution of cognitive resources from the current task to novel opportunities. Frontal pole cortex (FPC) and posterior cingulate cortex (PCC) have close neuroanatomical connections, and imaging studies have shown coactivation or codeactivation of these brain regions during performance of certain tasks. However, they are among the least well-understood regions of the primate brain. One reason for this is that the consequences of selective bilateral lesions to either structure have not previously been studied in any primate species. We studied the effects of circumscribed bilateral lesions to FPC or PCC on monkeys’ ability to perform an analog of Wisconsin Card Sorting Test (WCST) and related tasks. In contrast to lesions in other prefrontal regions, neither posttraining FPC nor PCC lesions impaired animals’ abilities to follow the rule switches that frequently occurred within the WCST task. However, FPC lesions were not without effect, because they augmented the ability of animals to adjust cognitive control after experiencing high levels of conflict (whereas PCC lesions did not have any effect). In addition, FPC-lesioned monkeys were more successful than controls or PCC-lesioned animals at remembering the relevant rule across experimentally imposed distractions involving either an intervening secondary task or a surprising delivery of free reward. Although prefrontal cortex posterior to FPC is specialized for mediating efficient goal-directed behavior to maximally exploit reward opportunities from ongoing tasks, our data led us to suggest that FPC is, instead, specialized for disengaging executive control from the current task and redistributing it to novel sources of reward to explore new opportunities/goals.
The Journal of Neuroscience | 2014
Masaru Kuwabara; Farshad A. Mansouri; Mark J. Buckley; Keiji Tanaka
Monkeys were trained to select one of three targets by matching in color or matching in shape to a sample. Because the matching rule frequently changed and there were no cues for the currently relevant rule, monkeys had to maintain the relevant rule in working memory to select the correct target. We found that monkeys error commission was not limited to the period after the rule change and occasionally occurred even after several consecutive correct trials, indicating that the task was cognitively demanding. In trials immediately after such error trials, monkeys speed of selecting targets was slower. Additionally, in trials following consecutive correct trials, the monkeys target selections for erroneous responses were slower than those for correct responses. We further found evidence for the involvement of the cortex in the anterior cingulate sulcus (ACCs) in these error-related behavioral modulations. First, ACCs cell activity differed between after-error and after-correct trials. In another group of ACCs cells, the activity differed depending on whether the monkeys were making a correct or erroneous decision in target selection. Second, bilateral ACCs lesions significantly abolished the response slowing both in after-error trials and in error trials. The error likelihood in after-error trials could be inferred by the error feedback in the previous trial, whereas the likelihood of erroneous responses after consecutive correct trials could be monitored only internally. These results suggest that ACCs represent both context-dependent and internally detected error likelihoods and promote modes of response selections in situations that involve these two types of error likelihood.
The Journal of Neuroscience | 2014
Farshad A. Mansouri; Mark J. Buckley; Keiji Tanaka
Conflict in information processing evokes trial-by-trial behavioral modulations. Influential models suggest that adaptive tuning of executive control, mediated by mid-dorsal lateral prefrontal cortex (mdlPFC) and anterior cingulate cortex (ACC), underlies these modulations. However, mdlPFC and ACC are parts of distributed brain networks including orbitofrontal cortex (OFC), posterior cingulate cortex (PCC), and superior-dorsal lateral prefrontal cortex (sdlPFC). Contributions of these latter areas in adaptive tuning of executive control are unknown. We trained monkeys to perform a matching task in which they had to resolve the conflict between two behavior-guiding rules. Here, we report that bilateral lesions in OFC, but not in PCC or sdlPFC, impaired selection between these competing rules. In addition, the behavioral adaptation that is normally induced by experiencing conflict disappeared in OFC-lesioned, but remained normal in PCC-lesioned or sdlPFC-lesioned monkeys. Exploring underlying neuronal processes, we found that the activity of neurons in OFC represented the conflict between behavioral options independent from the other aspects of the task. Responses of OFC neurons to rewards also conveyed information of the conflict level that the monkey had experienced along the course to obtain the reward. Our findings indicate dissociable functions for five closely interconnected cortical areas suggesting that OFC and mdlPFC, but not PCC or sdlPFC or ACC, play indispensable roles in conflict-dependent executive control of on-going behavior. Both mdlPFC and OFC support detection of conflict and its integration with the task goal, but in contrast to mdlPFC, OFC does not retain the necessary information for conflict-induced modulation of future decisions.
Nature Reviews Neuroscience | 2017
Farshad A. Mansouri; E Koechlin; Rosa Mgp.; Mark J. Buckley
Humans are set apart from other animals by many elements of advanced cognition and behaviour, including language, judgement and reasoning. What is special about the human brain that gives rise to these abilities? Could the foremost part of the prefrontal cortex (the frontopolar cortex), which has become considerably enlarged in humans during evolution compared with other animals, be important in this regard, especially as, in primates, it contains a unique cytoarchitectural field, area 10? The first studies of the function of the frontopolar cortex in monkeys have now provided critical new insights about its precise role in monitoring the significance of current and alternative goals. In human evolution, the frontopolar cortex may have acquired a further role in enabling the monitoring of the significance of multiple goals in parallel, as well as switching between them. Here, we argue that many other forms of uniquely human behaviour may benefit from this cognitive ability mediated by the frontopolar cortex.