Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Farzana Jasmine is active.

Publication


Featured researches published by Farzana Jasmine.


Cancer Epidemiology, Biomarkers & Prevention | 2007

Arsenic Metabolism, Genetic Susceptibility, and Risk of Premalignant Skin Lesions in Bangladesh

Habibul Ahsan; Yu Chen; Muhammad G. Kibriya; Vesna Slavkovich; Faruque Parvez; Farzana Jasmine; Mary V. Gamble; Joseph H. Graziano

We conducted a case-control study to investigate interindividual variability in susceptibility to health effects of inorganic arsenic due to arsenic metabolism efficiency, genetic factors, and their interaction. A total of 594 cases of arsenic-induced skin lesions and 1,041 controls was selected from baseline participants in a large prospective cohort study in Bangladesh. Adjusted odds ratios (OR) for skin lesions were estimated in relation to the polymorphisms in the glutathione S-transferase ω1 and methylenetetrahydrofolate reductase genes, the percentage of monomethylarsonous acid (%MMA) and dimethylarsinic acid (%DMA) in urine, and the ratios of MMA to inorganic arsenic and DMA to MMA. Water arsenic concentration was positively associated with %MMA and inversely associated with %DMA. The dose-response relationship of risk of skin lesion with %MMA was more apparent than those with other methylation indices; the ORs for skin lesions in relation to increasing %MMA quartiles were 1.00 (reference), 1.33 [95% confidence interval (95% CI), 0.92-1.93], 1.68 (95% CI, 1.17-2.42), and 1.57 (95% CI, 1.10-2.26; P for trend = 0.01). The ORs for skin lesions in relation to the methylenetetrahydrofolate reductase 677TT/1298AA and 677CT/1298AA diplotypes (compared with 677CC/1298CC diplotype) were 1.66 (95% CI, 1.00-2.77) and 1.77 (95% CI, 0.61-5.14), respectively. The OR for skin lesions in relation to the glutathione S-transferase ω1 diplotype containing all at-risk alleles was 3.91 (95% CI, 1.03-14.79). Analysis of joint effects of genotypes/diplotypes with water arsenic concentration and urinary %MMA suggests additivity of these factors. The findings suggest that arsenic metabolism, particularly the conversion of MMA to DMA, may be saturable and that differences in urinary arsenic metabolites, genetic factors related to arsenic metabolism, and their joint distributions modulate arsenic toxicity. (Cancer Epidemiol Biomarkers Prev 2007;16(6):1270–8)


Hepatology | 2012

Genome-wide DNA methylation profiles in hepatocellular carcinoma†‡

Jing Shen; Shuang Wang; Yu-Jing Zhang; Maya Kappil; Hui-Chen Wu; Muhammad G. Kibriya; Qiao Wang; Farzana Jasmine; H Ahsan; Po-Huang Lee; Ming-Whei Yu; Chien-Jen Chen; Regina M. Santella

Alterations in DNA methylation frequently occur in hepatocellular cancer (HCC). We have previously demonstrated that hypermethylation in candidate genes can be detected in plasma DNA before HCC diagnosis. To identify, with a genome‐wide approach, additional genes hypermethylated in HCC that could be used for more accurate analysis of plasma DNA for early diagnosis, we analyzed tumor and adjacent nontumor tissues from 62 Taiwanese HCC cases using Illumina methylation arrays (Illumina, Inc., San Diego, CA) that screen 26,486 autosomal CpG sites. After Bonferroni adjustment, a total of 2,324 CpG sites significantly differed in methylation level, with 684 CpG sites significantly hypermethylated and 1,640 hypomethylated in tumor, compared to nontumor tissues. Array data were validated with pyrosequencing in a subset of five of these genes; correlation coefficients ranged from 0.92 to 0.97. Analysis of plasma DNA from 38 cases demonstrated that 37%‐63% of cases had detectable hypermethylated DNA (≥5% methylation) for these five genes individually. At least one of these genes was hypermethylated in 87% of the cases, suggesting that measurement of DNA methylation in plasma samples is feasible. Conclusion: The panel of methylated genes indentified in the current study will be further tested in a large cohort of prospectively collected samples to determine their utility as early biomarkers of HCC. (HEPATOLOGY 2012;55:1799–1810)


PLOS Genetics | 2012

Genome-Wide Association Study Identifies Chromosome 10q24.32 Variants Associated with Arsenic Metabolism and Toxicity Phenotypes in Bangladesh

Brandon L. Pierce; Muhammad G. Kibriya; Lin Tong; Farzana Jasmine; Maria Argos; Shantanu Roy; Rachelle Paul-Brutus; Ronald Rahaman; Muhammad Rakibuz-Zaman; Faruque Parvez; Alauddin Ahmed; Iftekhar Quasem; Samar Kumar Hore; Shafiul Alam; Tariqul Islam; Vesna Slavkovich; Mary V. Gamble; Yunus; Mahfuzar Rahman; John A. Baron; Joseph H. Graziano; Habibul Ahsan

Arsenic contamination of drinking water is a major public health issue in many countries, increasing risk for a wide array of diseases, including cancer. There is inter-individual variation in arsenic metabolism efficiency and susceptibility to arsenic toxicity; however, the basis of this variation is not well understood. Here, we have performed the first genome-wide association study (GWAS) of arsenic-related metabolism and toxicity phenotypes to improve our understanding of the mechanisms by which arsenic affects health. Using data on urinary arsenic metabolite concentrations and approximately 300,000 genome-wide single nucleotide polymorphisms (SNPs) for 1,313 arsenic-exposed Bangladeshi individuals, we identified genome-wide significant association signals (P<5×10−8) for percentages of both monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) near the AS3MT gene (arsenite methyltransferase; 10q24.32), with five genetic variants showing independent associations. In a follow-up analysis of 1,085 individuals with arsenic-induced premalignant skin lesions (the classical sign of arsenic toxicity) and 1,794 controls, we show that one of these five variants (rs9527) is also associated with skin lesion risk (P = 0.0005). Using a subset of individuals with prospectively measured arsenic (n = 769), we show that rs9527 interacts with arsenic to influence incident skin lesion risk (P = 0.01). Expression quantitative trait locus (eQTL) analyses of genome-wide expression data from 950 individuals lymphocyte RNA suggest that several of our lead SNPs represent cis-eQTLs for AS3MT (P = 10−12) and neighboring gene C10orf32 (P = 10−44), which are involved in C10orf32-AS3MT read-through transcription. This is the largest and most comprehensive genomic investigation of arsenic metabolism and toxicity to date, the only GWAS of any arsenic-related trait, and the first study to implicate 10q24.32 variants in both arsenic metabolism and arsenical skin lesion risk. The observed patterns of associations suggest that MMA% and DMA% have distinct genetic determinants and support the hypothesis that DMA is the less toxic of these two methylated arsenic species. These results have potential translational implications for the prevention and treatment of arsenic-associated toxicities worldwide.


Epigenetics | 2013

Exploring genome-wide DNA methylation profiles altered in hepatocellular carcinoma using Infinium HumanMethylation 450 BeadChips

Jing Shen; Shuang Wang; Yu-Jing Zhang; Hui-Chen Wu; Muhammad G. Kibriya; Farzana Jasmine; Habibul Ahsan; David Ph Wu; Abby B. Siegel; Helen Remotti; Regina M. Santella

Hepatocellular carcinoma (HCC) incidence has increased in the US and also has one of the fastest growing death rates of any cancer. The purpose of the current study was to discover novel genome-wide aberrant DNA methylation patterns in HCC tumors that are predominantly HCV-related. Infinium HumanMethylation 450K BeadChip arrays were used to examine genome-wide DNA methylation profiles in 66 pairs of HCC tumor and adjacent non-tumor tissues. After Bonferroni adjustment, a total of 130,512 CpG sites significantly differed in methylation level in tumor compared with non-tumor tissues, with 28,017 CpG sites hypermethylated and 102,495 hypomethylated in tumor tissues. Absolute tumor/non-tumor methylation differences ≥ 20% were found in 24.9% of the hypermethylated and 43.1% of the hypomethylated CpG sites; almost 10,000 CpG sites have ≥ 30% DNA methylation differences. Most (60.1%) significantly hypermethylated CpG sites are located in CpG islands, with 21.6% in CpG shores and 3.6% in shelves. In contrast, only a small proportion (8.2%) of significantly hypomethylated CpG sites are situated in islands, while most are found in open sea (60.2%), shore (17.3%) or shelf (14.3%) regions. A total of 2,568 significant CpG sites (2,441 hypermethylated and 127 hypomethylated) covering 589 genes are located within 684 differentially methylated regions defined as regions with at least two significant CpG sites displaying > 20% methylation differences in the same direction within 250-bp. The top 500 significant CpG sites can significantly distinguish HCC tumor from adjacent tissues with one misclassification. Within adjacent non-tumor tissues, we also identified 75 CpG sites significantly associated with gender, 228 with HCV infection, 17,207 with cirrhosis, and 56 with both HCV infection and cirrhosis after multiple comparisons adjustment. Aberrant DNA methylation profiles across the genome were identified in tumor tissues from US HCC cases that are predominantly related to HCV infection. These results demonstrate the significance of aberrant DNA methylation in HCC tumorigenesis.


Cancer Epidemiology, Biomarkers & Prevention | 2006

Gene expression profiles in peripheral lymphocytes by arsenic exposure and skin lesion status in a Bangladeshi population.

Maria Argos; Muhammad G. Kibriya; Faruque Parvez; Farzana Jasmine; Muhammad Rakibuz-Zaman; Habibul Ahsan

Millions of individuals worldwide are chronically exposed to arsenic through their drinking water. In this study, the effect of arsenic exposure and arsenical skin lesion status on genome-wide gene expression patterns was evaluated using RNA from peripheral blood lymphocytes of individuals selected from the Health Effects of Arsenic Longitudinal Study. Affymetrix HG-U133A GeneChip (Affymetrix, Santa Clara, CA) arrays were used to measure the expression of ∼22,000 transcripts. Our primary statistical analysis involved identifying differentially expressed genes between participants with and without arsenical skin lesions based on the significance analysis of microarrays statistic with an a priori defined 1% false discovery rate to minimize false positives. To better characterize differential expression, we also conducted Gene Ontology and pathway comparisons in addition to the gene-specific analyses. Four-hundred sixty-eight genes were differentially expressed between these two groups, from which 312 differentially expressed genes were identified by restricting the analysis to female never-smokers. We also explored possible differential gene expression by arsenic exposure levels among individuals without manifest arsenical skin lesions; however, no differentially expressed genes could be identified from this comparison. Our findings show that microarray-based gene expression analysis is a powerful method to characterize the molecular profile of arsenic exposure and arsenic-induced diseases. Genes identified from this analysis may provide insights into the underlying processes of arsenic-induced disease and represent potential targets for chemoprevention studies to reduce arsenic-induced skin cancer in this population. (Cancer Epidemiol Biomarkers Prev 2006;15(7):1367–75)


Epigenetics | 2012

Genome-wide aberrant DNA methylation of microRNA host genes in hepatocellular carcinoma.

Jing Shen; Shuang Wang; Yu-Jing Zhang; Maya Kappil; Hui-Chen Wu; Muhammad G. Kibriya; Qiao Wang; Farzana Jasmine; Habibul Ahsan; Po-Huang Lee; Ming-Whei Yu; Chien-Jen Chen; Regina M. Santella

Mature microRNAs (miRNAs) are a class of small non-coding RNAs involved in posttranslational gene silencing. Previous studies found that downregulation of miRNAs is a common feature observed in solid tumors, including hepatocellular carcinoma (HCC). We employed a genome-wide approach to test the hypothesis that DNA methylation alterations in miRNA host genes may cause deregulated miRNA expression in HCC. We analyzed tumor and adjacent non-tumor tissues from 62 Taiwanese HCC cases using Infinium HumanMethylation27 DNA Analysis BeadChips that include 254 CpG sites covering 110 miRNAs from 64 host genes. Expression levels of three identified miRNAs (miR-10a, miR-10b and miR-196b) were measured in a subset of 37 HCC tumor and non-tumor tissues. After Bonferroni adjustment, a total of 54 CpG sites from 27 host genes significantly differed in DNA methylation levels between tumor and adjacent non-tumor tissues with 53 sites significantly hypermethylated in tumor tissues. Among the 54 significant CpG sites, 15 sites had more than 2-fold tumor/non-tumor changes, 17 sites had differences > 10%, and 10 sites had both features [including 8 significantly hypermethylated CpG sites in the host genes of miR-10a, miR-10b and miR-196b (HOXB4, HOXD4 and HOXA9, respectively)]. Significant downregulation of miR-10a was observed in tumor compared with non-tumor tissues (0.50 vs. 1.73, p = 0.031). The concordance for HOXB4 methylation alteration and dysregulation of miR-10a was 73.5%. No significant change was observed for miR-10b expression. Unexpectedly, miR-196b was significantly upregulated in tumor compared with non-tumor tissues (p = 0.0001). These data suggest that aberrant DNA methylation may lead to dysregulation of miR-10a in HCC tumor tissues.


International Journal of Epidemiology | 2013

Arsenic metabolism efficiency has a causal role in arsenic toxicity: Mendelian randomization and gene-environment interaction

Brandon L. Pierce; Lin Tong; Maria Argos; Jianjun Gao; Farzana Jasmine; Shantanu Roy; Rachelle Paul-Brutus; Ronald Rahaman; Muhammad Rakibuz-Zaman; Faruque Parvez; Alauddin Ahmed; Iftekhar Quasem; Samar Kumar Hore; Shafiul Alam; Tariqul Islam; Judith Harjes; Golam Sarwar; Vesna Slavkovich; Mary V. Gamble; Yu Chen; Mohammad Yunus; Mahfuzar Rahman; John Baron; Joseph H. Graziano; Habibul Ahsan

BACKGROUND Arsenic exposure through drinking water is a serious global health issue. Observational studies suggest that individuals who metabolize arsenic efficiently are at lower risk for toxicities such as arsenical skin lesions. Using two single nucleotide polymorphisms(SNPs) in the 10q24.32 region (near AS3MT) that show independent associations with metabolism efficiency, Mendelian randomization can be used to assess whether the association between metabolism efficiency and skin lesions is likely to be causal. METHODS Using data on 2060 arsenic-exposed Bangladeshi individuals, we estimated associations for two 10q24.32 SNPs with relative concentrations of three urinary arsenic species (representing metabolism efficiency): inorganic arsenic (iAs), monomethylarsonic acid(MMA) and dimethylarsinic acid (DMA). SNP-based predictions of iAs%, MMA% and DMA% were tested for association with skin lesion status among 2483 cases and 2857 controls. RESULTS Causal odds ratios for skin lesions were 0.90 (95% confidence interval[CI]: 0.87, 0.95), 1.19 (CI: 1.10, 1.28) and 1.23 (CI: 1.12, 1.36)for a one standard deviation increase in DMA%, MMA% and iAs%,respectively. We demonstrated genotype-arsenic interaction, with metabolism-related variants showing stronger associations with skin lesion risk among individuals with high arsenic exposure (synergy index: 1.37; CI: 1.11, 1.62). CONCLUSIONS We provide strong evidence for a causal relationship between arsenic metabolism efficiency and skin lesion risk. Mendelian randomization can be used to assess the causal role of arsenic exposure and metabolism in a wide array of health conditions.exposure and metabolism in a wide array of health conditions.Developing interventions that increase arsenic metabolism efficiency are likely to reduce the impact of arsenic exposure on health.


American Journal of Epidemiology | 2012

Association Between Arsenic Exposure From Drinking Water and Plasma Levels of Cardiovascular Markers

Fen Wu; Farzana Jasmine; Muhammad G. Kibriya; Mengling Liu; Oktawia P. Wójcik; Faruque Parvez; Ronald Rahaman; Shantanu Roy; Rachelle Paul-Brutus; Stephanie Segers; Vesna Slavkovich; Tariqul Islam; Diane Levy; Jacob L. Mey; Alexander van Geen; Joseph H. Graziano; Habibul Ahsan; Yu Chen

The authors conducted a cross-sectional study to assess the relation between arsenic exposure from drinking water and plasma levels of markers of systemic inflammation and endothelial dysfunction (matrix metalloproteinase-9, myeloperoxidase, plasminogen activator inhibitor-1, soluble E-selectin, soluble intercellular adhesion molecule-1 (ICAM-1), and soluble vascular adhesion molecule-1 (VCAM-1)) using baseline data from 668 participants (age, >30 years) in the Health Effects of Arsenic Longitudinal Study in Bangladesh (2007-2008). Both well water arsenic and urinary arsenic were positively associated with plasma levels of soluble VCAM-1. For every 1-unit increase in log-transformed well water arsenic (ln μg/L) and urinary arsenic (ln μg/g creatinine), plasma soluble VCAM-1 was 1.02 (95% confidence interval: 1.01, 1.03) and 1.04 (95% confidence interval: 1.01, 1.07) times greater, respectively. There was a significant interaction between arsenic exposure and higher body mass index, such that the increased levels of plasminogen activator inhibitor-1 and soluble VCAM-1 associated with arsenic exposure were stronger among people with higher body mass index. The findings indicate an effect of chronic arsenic exposure from drinking water on vascular inflammation and endothelial dysfunction that could be modified by body mass index and also suggest a potential mechanism underlying the association between arsenic exposure and cardiovascular disease.


Cancer Epidemiology, Biomarkers & Prevention | 2014

A Genome-wide Association Study of Early-Onset Breast Cancer Identifies PFKM as a Novel Breast Cancer Gene and Supports a Common Genetic Spectrum for Breast Cancer at Any Age

Habibul Ahsan; Jerry Halpern; Muhammad G. Kibriya; Brandon L. Pierce; Lin Tong; Eric R. Gamazon; Valerie McGuire; Anna Felberg; Jianxin Shi; Farzana Jasmine; Shantanu Roy; Rachelle Brutus; Maria Argos; Stephanie Melkonian; Jenny Chang-Claude; Irene L. Andrulis; John L. Hopper; Esther M. John; Kathi Malone; Giske Ursin; Marilie D. Gammon; Duncan C. Thomas; Daniela Seminara; Graham Casey; Julia A. Knight; Melissa C. Southey; Graham G. Giles; Regina M. Santella; Eunjung Lee; David V. Conti

Early-onset breast cancer (EOBC) causes substantial loss of life and productivity, creating a major burden among women worldwide. We analyzed 1,265,548 Hapmap3 single-nucleotide polymorphisms (SNP) among a discovery set of 3,523 EOBC incident cases and 2,702 population control women ages ≤ 51 years. The SNPs with smallest P values were examined in a replication set of 3,470 EOBC cases and 5,475 control women. We also tested EOBC association with 19,684 genes by annotating each gene with putative functional SNPs, and then combining their P values to obtain a gene-based P value. We examined the gene with smallest P value for replication in 1,145 breast cancer cases and 1,142 control women. The combined discovery and replication sets identified 72 new SNPs associated with EOBC (P < 4 × 10−8) located in six genomic regions previously reported to contain SNPs associated largely with later-onset breast cancer (LOBC). SNP rs2229882 and 10 other SNPs on chromosome 5q11.2 remained associated (P < 6 × 10−4) after adjustment for the strongest published SNPs in the region. Thirty-two of the 82 currently known LOBC SNPs were associated with EOBC (P < 0.05). Low power is likely responsible for the remaining 50 unassociated known LOBC SNPs. The gene-based analysis identified an association between breast cancer and the phosphofructokinase-muscle (PFKM) gene on chromosome 12q13.11 that met the genome-wide gene-based threshold of 2.5 × 10−6. In conclusion, EOBC and LOBC seem to have similar genetic etiologies; the 5q11.2 region may contain multiple distinct breast cancer loci; and the PFKM gene region is worthy of further investigation. These findings should enhance our understanding of the etiology of breast cancer. Cancer Epidemiol Biomarkers Prev; 23(4); 658–69. ©2014 AACR.


PLOS ONE | 2012

A Genome-Wide Study of Cytogenetic Changes in Colorectal Cancer Using SNP Microarrays: Opportunities for Future Personalized Treatment

Farzana Jasmine; Ronald Rahaman; Charlotte Dodsworth; Shantanu Roy; Rupash Paul; Maruf Raza; Rachelle Paul-Brutus; Mohammed Kamal; Habibul Ahsan; Muhammad G. Kibriya

In colorectal cancer (CRC), chromosomal instability (CIN) is typically studied using comparative-genomic hybridization (CGH) arrays. We studied paired (tumor and surrounding healthy) fresh frozen tissue from 86 CRC patients using Illuminas Infinium-based SNP array. This method allowed us to study CIN in CRC, with simultaneous analysis of copy number (CN) and B-allele frequency (BAF) - a representation of allelic composition. These data helped us to detect mono-allelic and bi-allelic amplifications/deletion, copy neutral loss of heterozygosity, and levels of mosaicism for mixed cell populations, some of which can not be assessed with other methods that do not measure BAF. We identified associations between CN abnormalities and different CRC phenotypes (histological diagnosis, location, tumor grade, stage, MSI and presence of lymph node metastasis). We showed commonalities between regions of CN change observed in CRC and the regions reported in previous studies of other solid cancers (e.g. amplifications of 20q, 13q, 8q, 5p and deletions of 18q, 17p and 8p). From Therapeutic Target Database, we identified relevant drugs, targeted to the genes located in these regions with CN changes, approved or in trials for other cancers and common diseases. These drugs may be considered for future therapeutic trials in CRC, based on personalized cytogenetic diagnosis. We also found many regions, harboring genes, which are not currently targeted by any relevant drugs that may be considered for future drug discovery studies. Our study shows the application of high density SNP arrays for cytogenetic study in CRC and its potential utility for personalized treatment.

Collaboration


Dive into the Farzana Jasmine's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Argos

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lin Tong

University of Chicago

View shared research outputs
Researchain Logo
Decentralizing Knowledge