Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph H. Graziano is active.

Publication


Featured researches published by Joseph H. Graziano.


Environmental Health Perspectives | 2005

Low-Level Environmental Lead Exposure and Children's Intellectual Function: An International Pooled Analysis

Bruce P. Lanphear; Richard Hornung; Jane Khoury; Kimberly Yolton; Peter Baghurst; David C. Bellinger; Richard L. Canfield; Kim N. Dietrich; Robert L. Bornschein; Tom Greene; Stephen J. Rothenberg; Herbert L. Needleman; Lourdes Schnaas; Gail A. Wasserman; Joseph H. Graziano; Russell Roberts

Lead is a confirmed neurotoxin, but questions remain about lead-associated intellectual deficits at blood lead levels < 10 μg/dL and whether lower exposures are, for a given change in exposure, associated with greater deficits. The objective of this study was to examine the association of intelligence test scores and blood lead concentration, especially for children who had maximal measured blood lead levels < 10 μg/dL. We examined data collected from 1,333 children who participated in seven international population-based longitudinal cohort studies, followed from birth or infancy until 5–10 years of age. The full-scale IQ score was the primary outcome measure. The geometric mean blood lead concentration of the children peaked at 17.8 μg/dL and declined to 9.4 μg/dL by 5–7 years of age; 244 (18%) children had a maximal blood lead concentration < 10 μg/dL, and 103 (8%) had a maximal blood lead concentration < 7.5 μg/dL. After adjustment for covariates, we found an inverse relationship between blood lead concentration and IQ score. Using a log-linear model, we found a 6.9 IQ point decrement [95% confidence interval (CI), 4.2–9.4] associated with an increase in concurrent blood lead levels from 2.4 to 30 μg/dL. The estimated IQ point decrements associated with an increase in blood lead from 2.4 to 10 μg/dL, 10 to 20 μg/dL, and 20 to 30 μg/dL were 3.9 (95% CI, 2.4–5.3), 1.9 (95% CI, 1.2–2.6), and 1.1 (95% CI, 0.7–1.5), respectively. For a given increase in blood lead, the lead-associated intellectual decrement for children with a maximal blood lead level < 7.5 μg/dL was significantly greater than that observed for those with a maximal blood lead level ≥7.5 μg/dL (p = 0.015). We conclude that environmental lead exposure in children who have maximal blood lead levels < 7.5 μg/dL is associated with intellectual deficits.


Environmental Health Perspectives | 2013

The Broad Scope of Health Effects from Chronic Arsenic Exposure: Update on a Worldwide Public Health Problem

Marisa F. Naujokas; Beth Anderson; Habibul Ahsan; H. Vasken Aposhian; Joseph H. Graziano; Claudia Thompson; William A. Suk

Background: Concerns for arsenic exposure are not limited to toxic waste sites and massive poisoning events. Chronic exposure continues to be a major public health problem worldwide, affecting hundreds of millions of persons. Objectives: We reviewed recent information on worldwide concerns for arsenic exposures and public health to heighten awareness of the current scope of arsenic exposure and health outcomes and the importance of reducing exposure, particularly during pregnancy and early life. Methods: We synthesized the large body of current research pertaining to arsenic exposure and health outcomes with an emphasis on recent publications. Discussion: Locations of high arsenic exposure via drinking water span from Bangladesh, Chile, and Taiwan to the United States. The U.S. Environmental Protection Agency maximum contaminant level (MCL) in drinking water is 10 µg/L; however, concentrations of > 3,000 µg/L have been found in wells in the United States. In addition, exposure through diet is of growing concern. Knowledge of the scope of arsenic-associated health effects has broadened; arsenic leaves essentially no bodily system untouched. Arsenic is a known carcinogen associated with skin, lung, bladder, kidney, and liver cancer. Dermatological, developmental, neurological, respiratory, cardiovascular, immunological, and endocrine effects are also evident. Most remarkably, early-life exposure may be related to increased risks for several types of cancer and other diseases during adulthood. Conclusions: These data call for heightened awareness of arsenic-related pathologies in broader contexts than previously perceived. Testing foods and drinking water for arsenic, including individual private wells, should be a top priority to reduce exposure, particularly for pregnant women and children, given the potential for life-long effects of developmental exposure.


The Lancet | 2010

Arsenic exposure from drinking water, and all-cause and chronic-disease mortalities in Bangladesh (HEALS): a prospective cohort study

Maria Argos; Tara Kalra; Paul J. Rathouz; Yu Chen; Brandon L. Pierce; Faruque Parvez; Tariqul Islam; Alauddin Ahmed; Muhammad Rakibuz-Zaman; Rabiul Hasan; Golam Sarwar; Vesna Slavkovich; Alexander van Geen; Joseph H. Graziano; Habibul Ahsan

BACKGROUND Millions of people worldwide are chronically exposed to arsenic through drinking water, including 35-77 million people in Bangladesh. The association between arsenic exposure and mortality rate has not been prospectively investigated by use of individual-level data. We therefore prospectively assessed whether chronic and recent changes in arsenic exposure are associated with all-cause and chronic-disease mortalities in a Bangladeshi population. METHODS In the prospective cohort Health Effects of Arsenic Longitudinal Study (HEALS), trained physicians unaware of arsenic exposure interviewed in person and clinically assessed 11 746 population-based participants (aged 18-75 years) from Araihazar, Bangladesh. Participants were recruited from October, 2000, to May, 2002, and followed-up biennially. Data for mortality rates were available throughout February, 2009. We used Cox proportional hazards model to estimate hazard ratios (HRs) of mortality, with adjustment for potential confounders, at different doses of arsenic exposure. FINDINGS 407 deaths were ascertained between October, 2000, and February, 2009. Multivariate adjusted HRs for all-cause mortality in a comparison of arsenic at concentrations of 10.1-50.0 microg/L, 50.1-150.0 microg/L, and 150.1-864.0 microg/L with at least 10.0 microg/L in well water were 1.34 (95% CI 0.99-1.82), 1.09 (0.81-1.47), and 1.68 (1.26-2.23), respectively. Results were similar with daily arsenic dose and total arsenic concentration in urine. Recent change in exposure, measurement of total arsenic concentrations in urine repeated biennially, did not have much effect on the mortality rate. INTERPRETATION Chronic arsenic exposure through drinking water was associated with an increase in the mortality rate. Follow-up data from this cohort will be used to assess the long-term effects of arsenic exposure and how they might be affected by changes in exposure. However, solutions and resources are urgently needed to mitigate the resulting health effects of arsenic exposure. FUNDING US National Institutes of Health.


BMJ | 2011

Arsenic exposure from drinking water and mortality from cardiovascular disease in Bangladesh: prospective cohort study

Yu Chen; Joseph H. Graziano; Faruque Parvez; Mengling Liu; Vesna Slavkovich; Tara Kalra; Maria Argos; Tariqul Islam; Alauddin Ahmed; Muhammad Rakibuz-Zaman; Rabiul Hasan; Golam Sarwar; Diane Levy; Alexander van Geen; Habibul Ahsan

Objective To evaluate the association between arsenic exposure and mortality from cardiovascular disease and to assess whether cigarette smoking influences the association. Design Prospective cohort study with arsenic exposure measured in drinking water from wells and urine. Setting General population in Araihazar, Bangladesh. Participants 11 746 men and women who provided urine samples in 2000 and were followed up for an average of 6.6 years. Main outcome measure Death from cardiovascular disease. Results 198 people died from diseases of circulatory system, accounting for 43% of total mortality in the population. The mortality rate for cardiovascular disease was 214.3 per 100 000 person years in people drinking water containing <12.0 µg/L arsenic, compared with 271.1 per 100 000 person years in people drinking water with ≥12.0 µg/L arsenic. There was a dose-response relation between exposure to arsenic in well water assessed at baseline and mortality from ischaemic heart disease and other heart disease; the hazard ratios in increasing quarters of arsenic concentration in well water (0.1-12.0, 12.1-62.0, 62.1-148.0, and 148.1-864.0 µg/L) were 1.00 (reference), 1.22 (0.65 to 2.32), 1.35 (0.71 to 2.57), and 1.92 (1.07 to 3.43) (P=0.0019 for trend), respectively, after adjustment for potential confounders including age, sex, smoking status, educational attainment, body mass index (BMI), and changes in urinary arsenic concentration since baseline. Similar associations were observed when baseline total urinary arsenic was used as the exposure variable and for mortality from ischaemic heart disease specifically. The data indicate a significant synergistic interaction between arsenic exposure and cigarette smoking in mortality from ischaemic heart disease and other heart disease. In particular, the hazard ratio for the joint effect of a moderate level of arsenic exposure (middle third of well arsenic concentration 25.3-114.0 µg/L, mean 63.5 µg/L) and cigarette smoking on mortality from heart disease was greater than the sum of the hazard ratios associated with their individual effect (relative excess risk for interaction 1.56, 0.05 to 3.14; P=0.010). Conclusions Exposure to arsenic in drinking water is adversely associated with mortality from heart disease, especially among smokers.


Environmental Health Perspectives | 2006

Water arsenic exposure and intellectual function in 6-year-old children in Araihazar, Bangladesh.

Gail A. Wasserman; Xinhua Liu; Faruque Parvez; Habibul Ahsan; Pam Factor-Litvak; Jennie Kline; van Geen A; Slavkovich; Loiacono Nj; Diane Levy; Zhongqi Cheng; Joseph H. Graziano

Background We recently reported results of a cross-sectional investigation of intellectual function in 10-year-olds in Bangladesh, who had been exposed to arsenic from drinking water in their home wells. Objectives We present results of a similar investigation of 301 randomly selected 6-year-olds whose parents participated in our ongoing prospective study of the health effects of As exposure in 12,000 residents of Araihazar, Bangladesh. Methods Water As and manganese concentrations of tube wells at each home were obtained by surveying all study region wells. Children and mothers were first visited at home, where the quality of home stimulation was measured, and then seen in our field clinic, where children received a medical examination wherein weight, height, and head circumference were assessed. We assessed children’s intellectual function using subtests drawn from the Wechsler Preschool and Primary Scale of Intelligence, version III, by summing weighted items across domains to create Verbal, Performance, Processing Speed, and Full-Scale raw scores. Children provided urine specimens for measuring urinary As and were asked to provide blood samples for blood lead measurements. Results Exposure to As from drinking water was associated with reduced intellectual function before and after adjusting for water Mn, for blood lead levels, and for sociodemographic features known to contribute to intellectual function. With covariate adjustment, water As remained significantly negatively associated with both Performance and Processing Speed raw scores; associations were less strong than in our previously studied 10-year-olds. Conclusion This second cross-sectional study of As exposure expands our concerns about As neurotoxicity to a younger age group.


Environmental Health Perspectives | 2005

Folate, homocysteine, and arsenic metabolism in arsenic-exposed individuals in Bangladesh.

Mary V. Gamble; Xinhua Liu; Habibul Ahsan; J. Richard Pilsner; Vesna Ilievski; Vesna Slavkovich; Faruque Parvez; Diane Levy; Pam Factor-Litvak; Joseph H. Graziano

Chronic exposure to arsenic is occurring throughout South and East Asia due to groundwater contamination of well water. Variability in susceptibility to arsenic toxicity may be related to nutritional status. Arsenic is methylated to monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) via one-carbon metabolism, a biochemical pathway that is dependent on folate. The majority of one-carbon metabolism methylation reactions are devoted to biosynthesis of creatine, the precursor of creatinine. Our objectives of this cross-sectional study were to characterize the relationships among folate, cobalamin, homocysteine, and arsenic metabolism in Bangladeshi adults. Water arsenic, urinary arsenic, urinary creatinine, plasma folate, cobalamin, and homocysteine were assessed in 1,650 adults; urinary arsenic metabolites were analyzed for a subset of 300 individuals. The percentage of DMA in urine was positively associated with plasma folate (r = 0.14, p = 0.02) and negatively associated with total homocysteine (tHcys; r = −0.14, p = 0.01). Conversely, percent MMA was negatively associated with folate (r = −0.12, p = 0.04) and positively associated with tHcys (r = 0.21, p = 0.0002); percent inorganic arsenic (InAs) was negatively associated with folate (r = −0.12, p = 0.03). Urinary creatinine was positively correlated with percent DMA (r = 0.40 for males, p < 0.0001; 0.25 for females, p = 0.001), and with percent InAs (r = −0.45 for males, p < 0.0001; −0.20 for females, p = 0.01). Collectively, these data suggest that folate, tHcys, and other factors involved in one-carbon metabolism influence arsenic methylation. This may be particularly relevant in Bangladesh, where the prevalence of hyperhomocysteinemia is extremely high.


Journal of Exposure Science and Environmental Epidemiology | 2006

Health Effects of Arsenic Longitudinal Study (HEALS): Description of a multidisciplinary epidemiologic investigation

Habibul Ahsan; Yu Chen; Faruque Parvez; Maria Argos; Hassina Momotaj; Diane Levy; Alexander van Geen; Geoffrey R. Howe; Joseph H. Graziano

Health Effects of Arsenic Longitudinal Study (HEALS), a multidisciplinary and large prospective cohort study in Araihazar, Bangladesh, was established to evaluate the effects of full-dose range arsenic (As) exposure on various health outcomes, including premalignant and malignant skin tumors, total mortality, pregnancy outcomes, and childrens cognitive development. In this paper, we provide descriptions of the study methods including study design, study population, data collection, response rates, and exposure and outcome assessments. We also present characteristics of the study participants including the distribution of exposure and the prevalence of skin lesion at baseline recruitment. A total of 11,746 married men and women between 18 and 75 years of age participated in the study at baseline (a response rate of 98%) and completed a full questionnaire interview that included a food frequency questionnaire, with a response rate of 98%. Among the 98% of the participants who completed the clinical evaluation, over 90% provided blood samples and spot urine samples. Higher educational status, male gender, and presence of premalignant skin lesions were associated with an increased likelihood of providing blood and urine samples. Older participants were less likely to donate a blood sample. About one-third of the participants consumed water from a well with As concentration in each of three groups: >100 μg/l, 25–100 μg/l, and <25 μg/l. Average urinary As concentrations were 140 and 136 μg/l for males and females, respectively. HEALS has several unique features, including a prospective study design, comprehensive assessments of both past and future changes in As exposure at the individual level, a large repository of biological samples, and a full dose range of As exposures in the study population. HEALS is a valuable resource for examining novel research questions on the health effects of As exposure.


Bulletin of The World Health Organization | 2002

Promotion of well-switching to mitigate the current arsenic crisis in Bangladesh

Alexander van Geen; Habibul Ahsan; Allan H. Horneman; R. K. Dhar; Yan Zheng; Hassina Momotaj; Mohammad Shahnewaz; Ashraf Ali Seddique; Joseph H. Graziano

OBJECTIVE To survey tube wells and households in Araihazar upazila, Bangladesh, to set the stage for a long-term epidemiological study of the consequences of chronic arsenic exposure. METHODS Water samples and household data were collected over a period of 4 months in 2000 from 4997 contiguous tube wells serving a population of 55000, the position of each well being determined to within +/- 30 m using Global Positioning System receivers. Arsenic concentrations were determined by graphite-furnace atomic-absorption spectrometry. In addition, groundwater samples collected every 2 weeks for an entire year from six tube wells were analysed for arsenic by high-resolution inductively coupled plasma-mass spectrometry. FINDINGS Half of the wells surveyed in Araihazar had been installed in the previous 5 years; 94% were privately owned. Only about 48% of the surveyed wells supplied water with an arsenic content below 50 micro g/l, the current Bangladesh standard for drinking-water. Similar to other regions of Bangladesh and West Bengal, India, the distribution of arsenic in Araihazar is spatially highly variable (range: 5-860 micro g/l) and therefore difficult to predict. Because of this variability, however, close to 90% of the inhabitants live within 100 m of a safe well. Monitoring of six tube wells currently meeting the 50 micro g/l standard showed no indication of a seasonal cycle in arsenic concentrations coupled to the hydrological cycle. This suggests that well-switching is a viable option in Araihazar, at least for the short term. CONCLUSIONS Well-switching should be more systematically encouraged in Araihazar and many other parts of Bangladesh and West Bengal, India. Social barriers to well-switching need to be better understood and, if possible, overcome.


Brain Research | 1998

Manganese inhibits mitochondrial aconitase: a mechanism of manganese neurotoxicity.

Wei Zheng; Sean Ren; Joseph H. Graziano

The symptoms of Mn-induced neurotoxicity resemble those of Parkinsons diseases. Since iron (Fe) appears to play a pivotal role in pathophysiology of Parkinsons disease, we set out to test the hypothesis that alterations in Fe-requiring enzymes such as aconitase contribute to Mn-induced neurotoxicity. Mitochondrial fractions prepared from rat brain were preincubated with MnCl2 in vitro, followed by the enzyme assay. Mn treatment significantly inhibited mitochondrial aconitase activity (24% inhibition at 625 microM to 81% at 2.5 mM, p<0.05). The inhibitory effect was reversible and Mn-concentration dependent, and was reversed by the addition of Fe (0.05-1 mM) to the reaction mixture. In an in vivo chronic Mn exposure model, rats received intraperitoneal injection of 6 mg/kg Mn as MnCl2 once daily for 30 consecutive days. Mn exposure led to a region-specific alteration in total aconitase (i.e. , mitochondrial+cytoplasmic): 48.5% reduction of the enzyme activity in frontal cortex (p<0.01), 33.7% in striatum (p<0.0963), and 20.6% in substantia nigra (p<0.139). Chronic Mn exposure increased Mn concentrations in serum, CSF, and brain tissues. The elevation of Mn in all selected brain regions (range between 3.1 and 3.9 fold) was similar in magnitude to that in CSF (3.1 fold) rather than serum (6. 1 fold). The present results suggest that Mn alters brain aconitase activity, which may lead to the disruption of mitochondrial energy production and cellular Fe metabolism in the brain.


Toxicology and Applied Pharmacology | 2009

Arsenic exposure at low-to-moderate levels and skin lesions, arsenic metabolism, neurological functions, and biomarkers for respiratory and cardiovascular diseases: Review of recent findings from the Health Effects of Arsenic Longitudinal Study (HEALS) in Bangladesh

Yu Chen; Faruque Parvez; Mary V. Gamble; Tariqul Islam; Alauddin Ahmed; Maria Argos; Joseph H. Graziano; Habibul Ahsan

The contamination of groundwater by arsenic in Bangladesh is a major public health concern affecting 35-75 million people. Although it is evident that high levels (>300 microg/L) of arsenic exposure from drinking water are related to adverse health outcomes, health effects of arsenic exposure at low-to-moderate levels (10-300 microg/L) are not well understood. We established the Health Effects of Arsenic Longitudinal Study (HEALS) with more than 20,000 men and women in Araihazar, Bangladesh, to prospectively investigate the health effects of arsenic predominantly at low-to-moderate levels (0.1 to 864 microg/L, mean 99 microg/L) of arsenic exposure. Findings to date suggest adverse effects of low-to-moderate levels of arsenic exposure on the risk of pre-malignant skin lesions, high blood pressure, neurological dysfunctions, and all-cause and chronic disease mortality. In addition, the data also indicate that the risk of skin lesion due to arsenic exposure is modifiable by nutritional factors, such as folate and selenium status, lifestyle factors, including cigarette smoking and body mass index, and genetic polymorphisms in genes related to arsenic metabolism. The analyses of biomarkers for respiratory and cardiovascular functions support that there may be adverse effects of arsenic on these outcomes and call for confirmation in large studies. A unique strength of the HEALS is the availability of outcome data collected prospectively and data on detailed individual-level arsenic exposure estimated using water, blood and repeated urine samples. Future prospective analyses of clinical endpoints and related host susceptibility will enhance our knowledge on the health effects of low-to-moderate levels of arsenic exposure, elucidate disease mechanisms, and give directions for prevention.

Collaboration


Dive into the Joseph H. Graziano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge