Farzaneh Modarresi
University of Miami
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Farzaneh Modarresi.
Nature Medicine | 2008
Mohammad Ali Faghihi; Farzaneh Modarresi; Ahmad M. Khalil; Douglas E. Wood; Barbara G. Sahagan; Todd E. Morgan; Caleb E. Finch; Georges St. Laurent; Paul J. Kenny; Claes Wahlestedt
Recent efforts have revealed that numerous protein-coding messenger RNAs have natural antisense transcript partners, most of which seem to be noncoding RNAs. Here we identify a conserved noncoding antisense transcript for β-secretase-1 (BACE1), a crucial enzyme in Alzheimers disease pathophysiology. The BACE1-antisense transcript (BACE1-AS) regulates BACE1 mRNA and subsequently BACE1 protein expression in vitro and in vivo. Upon exposure to various cell stressors including amyloid-β 1–42 (Aβ 1–42), expression of BACE1-AS becomes elevated, increasing BACE1 mRNA stability and generating additional Aβ 1–42 through a post-transcriptional feed-forward mechanism. BACE1-AS concentrations were elevated in subjects with Alzheimers disease and in amyloid precursor protein transgenic mice. These data show that BACE1 mRNA expression is under the control of a regulatory noncoding RNA that may drive Alzheimers disease–associated pathophysiology. In summary, we report that a long noncoding RNA is directly implicated in the increased abundance of Aβ 1–42 in Alzheimers disease.
Nature Biotechnology | 2012
Farzaneh Modarresi; Mohammad Ali Faghihi; Miguel A. López-Toledano; Roya Pedram Fatemi; Marco Magistri; Marcel van der Brug; Claes Wahlestedt
The ability to specifically upregulate genes in vivo holds great therapeutic promise. Here we show that inhibition or degradation of natural antisense transcripts (NATs) by single-stranded oligonucleotides or siRNAs can transiently and reversibly upregulate locus-specific gene expression. Brain-derived neurotrophic factor (BDNF) is normally repressed by a conserved noncoding antisense RNA transcript, BDNF-AS. Inhibition of this transcript upregulates BDNF mRNA by two- to sevenfold, alters chromatin marks at the BDNF locus, leads to increased protein levels and induces neuronal outgrowth and differentiation both in vitro and in vivo. We also show that inhibition of NATs leads to increases in glial-derived neurotrophic factor (GDNF) and ephrin receptor B2 (EPHB2) mRNA. Our data suggest that pharmacological approaches targeting NATs can confer locus-specific gene upregulation effects.Here we demonstrate that natural antisense transcripts (NATs), which are abundant in mammalian genomes, can function as repressors of specific genomic loci and that their removal or inhibition by AntagoNAT oligonucleotides leads to transient and reversible upregulation of sense gene expression. As one example, we show that Brain-Derived Neurotrophic Factor (BDNF) is under the control of a conserved noncoding antisense RNA transcript, BDNF-AS, both in vitro and in vivo. BDNF-AS tonically represses BDNF sense RNA transcription by altering chromatin structure at the BDNF locus, which in turn reduces endogenous BDNF protein and function. By providing additional and analogous examples of endogenous mRNA upregulation, we suggest that antisense RNA mediated transcriptional suppression is a common phenomenon. In sum, we demonstrate a novel pharmacological strategy by which endogenous gene expression can be upregulated in a locus-specific manner.
Genome Biology | 2010
Mohammad Ali Faghihi; Ming Zhang; Jia Huang; Farzaneh Modarresi; Marcel van der Brug; Michael A. Nalls; Mark R. Cookson; Georges St-Laurent; Claes Wahlestedt
BackgroundMicroRNAs (miRNAs) have the potential to regulate diverse sets of mRNA targets. In addition, mammalian genomes contain numerous natural antisense transcripts, most of which appear to be non-protein-coding RNAs (ncRNAs). We have recently identified and characterized a highly conserved non-coding antisense transcript for beta-secretase-1 (BACE1), a critical enzyme in Alzheimers disease pathophysiology. The BACE1-antisense transcript is markedly up-regulated in brain samples from Alzheimers disease patients and promotes the stability of the (sense) BACE1 transcript.ResultsWe report here that BACE1-antisense prevents miRNA-induced repression of BACE1 mRNA by masking the binding site for miR-485-5p. Indeed, miR-485-5p and BACE1-antisense compete for binding within the same region in the open reading frame of the BACE1 mRNA. We observed opposing effects of BACE1-antisense and miR-485-5p on BACE1 protein in vitro and showed that Locked Nucleic Acid-antimiR mediated knockdown of miR-485-5p as well as BACE1-antisense over-expression can prevent the miRNA-induced BACE1 suppression. We found that the expression of BACE1-antisense as well as miR-485-5p are dysregulated in RNA samples from Alzheimers disease subjects compared to control individuals.ConclusionsOur data demonstrate an interface between two distinct groups of regulatory RNAs in the computation of BACE1 gene expression. Moreover, bioinformatics analyses revealed a theoretical basis for many other potential interactions between natural antisense transcripts and miRNAs at the binding sites of the latter.
PLOS ONE | 2008
Ahmad M. Khalil; Mohammad Ali Faghihi; Farzaneh Modarresi; Claes Wahlestedt
Several genome-wide transcriptomics efforts have shown that a large percentage of the mammalian genome is transcribed into RNAs, however, only a small percentage (1–2%) of these RNAs is translated into proteins. Currently there is an intense interest in characterizing the function of the different classes of noncoding RNAs and their relevance to human disease. Using genomic approaches we discovered FMR4, a primate-specific noncoding RNA transcript (2.4 kb) that resides upstream and likely shares a bidirectional promoter with FMR1. FMR4 is a product of RNA polymerase II and has a similar half-life to FMR1. The CGG expansion in the 5′ UTR of FMR1 appears to affect transcription in both directions as we found FMR4, similar to FMR1, to be silenced in fragile X patients and up-regulated in premutation carriers. Knockdown of FMR4 by several siRNAs did not affect FMR1 expression, nor vice versa, suggesting that FMR4 is not a direct regulatory transcript for FMR1. However, FMR4 markedly affected human cell proliferation in vitro; siRNAs knockdown of FMR4 resulted in alterations in the cell cycle and increased apoptosis, while the overexpression of FMR4 caused an increase in cell proliferation. Collectively, our results demonstrate an antiapoptotic function of FMR4 and provide evidence that a well-studied genomic locus can show unexpected functional complexity. It cannot be excluded that altered FMR4 expression might contribute to aspects of the clinical presentation of fragile X syndrome and/or related disorders.
International Journal of Alzheimer's Disease | 2011
Farzaneh Modarresi; Mohammad Ali Faghihi; Nikunj S. Patel; Barbara G. Sahagan; Claes Wahlestedt; Miguel A. López-Toledano
Background. Alzheimers disease (AD) is a devastating neurological disorder and the main cause of dementia in the elderly population worldwide. Adult neurogenesis appears to be upregulated very early in AD pathogenesis in response to some specific aggregates of beta-amyloid (Aβ) peptides, exhausting the neuronal stem cell pools in the brain. Previously, we characterized a conserved nonprotein-coding antisense transcript for β-secretase-1 (BACE1), a critical enzyme in AD pathophysiology. We showed that the BACE1-antisense transcript (BACE1-AS) is markedly upregulated in brain samples from AD patients and promotes the stability of the (sense) BACE1 transcript. In the current paper, we examine the relationship between BACE1, BACE1-AS, adult neurogenesis markers, and amyloid plaque formation in amyloid precursor protein (APP) transgenic mice (Tg-19959) of various ages. Results. Consistent with previous publications in other APP overexpressing mouse models, we found adult neurogenesis markers to be noticeably upregulated in Tg-19959 mice very early in the development of the disease. Knockdown of either one of BACE1 or BACE1-AS transcripts by continuous infusion of locked nucleic acid- (LNA-) modified siRNAs into the third ventricle over the period of two weeks caused concordant downregulation of both transcripts in Tg-19959 mice. Downregulation of BACE1 mRNA was followed by reduction of BACE1 protein and insoluble Aβ. Modulation of BACE1 and BACE1-AS transcripts also altered oligomeric Aβ aggregation pattern, which was in turn associated with an increase in neurogenesis markers at the RNA and protein level. Conclusion. We found alterations in the RNA and protein concentrations of several adult neurogenesis markers, as well as non-protein-coding BACE1-AS transcripts, in parallel with the course of β-amyloid synthesis and aggregation in the brain of Tg15999 mice. In addition, by knocking down BACE1 or BACE1-AS (thereby reducing Aβ production and plaque deposition), we were able to modulate expression of these neurogenesis markers. Our findings suggest a distortion of adult neurogenesis that is associated with Aβ production very early in amyloid pathogenesis. We believe that these alterations, at the molecular level, could prove useful as novel therapeutic targets and/or as early biomarkers of AD.
PLOS ONE | 2010
Mohammad Ali Faghihi; Jannet Kocerha; Farzaneh Modarresi; Pär G. Engström; Alistair Morgan Chalk; Eric Koesema; Georges St. Laurent; Claes Wahlestedt
Natural antisense transcripts represent a class of regulatory RNA molecules, which are characterized by their complementary sequence to another RNA transcript. Extensive sequencing efforts suggest that natural antisense transcripts are prevalent throughout the mammalian genome; however, their biological significance has not been well defined. We performed a loss-of-function RNA interference (RNAi) screen, which targeted 797 evolutionary conserved antisense transcripts, and found evidence for a regulatory role for a number of natural antisense transcripts. Specifically, we found that natural antisense transcripts for CCPG1 and RAPGEF3 may functionally disrupt signaling pathways and corresponding biological phenotypes, such as cell viability, either independently or in parallel with the corresponding sense transcript. Our results show that the large-scale siRNA screen can be applied to evaluate natural antisense transcript modulation of fundamental cellular events.
Journal of Biomolecular Screening | 2015
Roya Pedram Fatemi; Sultan Salah-Uddin; Farzaneh Modarresi; Nathalie Khoury; Claes Wahlestedt; Mohammad Ali Faghihi
Long non–protein coding RNAs (lncRNAs) are an important class of molecules that help orchestrate key cellular events. Although their functional roles in cells are not well understood, thousands of lncRNAs and a number of possible mechanisms by which they act have been reported. LncRNAs can exert their regulatory function in cells by interacting with epigenetic enzymes. In this study, we developed a tool to study lncRNA-protein interactions for high-throughput screening of small-molecule modulators using AlphaScreen technology. We tested the interaction of two lncRNAs: brain-derived neurotrophic factor antisense (BDNF-AS) and Hox transcript antisense RNA (HOTAIR), with Enhancer of zeste homolog 2 (EZH2), a histone methyltransferase against a phytochemical library, to look for small-molecule inhibitors that can alter the expression of downstream target genes. We identified ellipticine, a compound that up-regulates BDNF transcription. Our study shows the feasibility of using high-throughput screening to identify modulators of lncRNA-protein interactions and paves the road for targeting lncRNAs that are dysregulated in human disorders using small-molecule therapies.
BMC Medical Genetics | 2018
Fatemeh Maghami; Seyed Mohammad Bagher Tabei; Hossein Moravej; Hassan Dastsooz; Farzaneh Modarresi; Mohammad Silawi; Mohammad Ali Faghihi
BackgroundOsteogenesis imperfecta (OI) is a group of connective tissue disorder caused by mutations of genes involved in the production of collagen and its supporting proteins. Although the majority of reported OI variants are in COL1A1 and COL1A2 genes, recent reports have shown problems in other non-collagenous genes involved in the post translational modifications, folding and transport, transcription and proliferation of osteoblasts, bone mineralization, and cell signaling. Up to now, 17 types of OI have been reported in which types I to IV are the most frequent cases with autosomal dominant pattern of inheritance.Case PresentationHere we report an 8- year- old boy with OI who has had multiple fractures since birth and now he is wheelchair-dependent. To identify genetic cause of OI in our patient, whole exome sequencing (WES) was carried out and it revealed a novel deleterious homozygote splice acceptor site mutation (c.1257-2A > G, IVS7-2A > G) in FKBP10 gene in the patient. Then, the identified mutation was confirmed using Sanger sequencing in the proband as homozygous and in his parents as heterozygous, indicating its autosomal recessive pattern of inheritance. In addition, we performed RT-PCR on RNA transcripts originated from skin fibroblast of the proband to analyze the functional effect of the mutation on splicing pattern of FKBP10 gene and it showed skipping of the exon 8 of this gene. Moreover, Real-Time PCR was carried out to quantify the expression level of FKBP10 in the proband and his family members in which it revealed nearly the full decrease in the level of FKBP10 expression in the proband and around 75% decrease in its level in the carriers of the mutation, strongly suggesting the pathogenicity of the mutation.ConclusionsOur study identified, for the first time, a private pathogenic splice site mutation in FKBP10 gene and further prove the involvement of this gene in the rare cases of autosomal recessive OI type XI with distinguished clinical manifestations.
BMC Medical Genetics | 2017
Mohammad Reza Bordbar; Farzaneh Modarresi; Mohammad Ali Farazi Fard; Hassan Dastsooz; Nader Shakib Azad; Mohammad Ali Faghihi
BMC Medical Genetics | 2017
Parvaneh Karimzadeh; Samaneh Naderi; Farzaneh Modarresi; Hassan Dastsooz; Hamid Nemati; Tayebeh Farokhashtiani; Bibi Shahin Shamsian; Soroor Inaloo; Mohammad Ali Faghihi