Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fatema Alzahrani is active.

Publication


Featured researches published by Fatema Alzahrani.


Journal of Medical Genetics | 2012

Study of autosomal recessive osteogenesis imperfecta in Arabia reveals a novel locus defined by TMEM38B mutation

Ranad Shaheen; Anas M. Alazami; Muneera J. Alshammari; Eissa Faqeih; Nadia Al-Hashmi; Noon Mousa; Aisha Alsinani; Shinu Ansari; Fatema Alzahrani; Mohammed Al-Owain; Zayed S. Alzayed; Fowzan S. Alkuraya

Background Osteogenesis imperfecta (OI) is an hereditary bone disease in which increased bone fragility leads to frequent fractures and other complications, usually in an autosomal dominant fashion. An expanding list of genes that encode proteins related to collagen metabolism are now recognised as important causes of autosomal recessive (AR) OI. Our aim was to study the contribution of known genes to AR OI in order to identify novel loci in mutation-negative cases. Methods We enrolled multiplex consanguineous families and simplex cases (also consanguineous) in which mutations in COL1A1 and COL1A2 had been excluded. We used autozygome guided mutation analysis of AR OI (AR OI) genes followed by exome sequencing when such analysis failed to identify the causative mutation. Results Two simplex and 11 multiplex families were enrolled, encompassing 27 cases. In three multiplex families, autozygosity and linkage analysis revealed a novel recessive OI locus on chromosome 9q31.1-31.3, and a novel truncating deletion of exon 4 of TMEM38B was identified within that interval. In addition, gonadal or gonadal/somatic mosaic mutations in COL1A1 or COL1A2 and homozygous mutations in recently described AR OI genes were identified in all remaining families. Conclusions TMEM38B is a novel candidate gene for AR OI. Future studies are needed to explore fully the contribution of this gene to AR OI in other populations.


American Journal of Human Genetics | 2008

Mutations in C2orf37, encoding a nucleolar protein, cause hypogonadism, alopecia, diabetes mellitus, mental retardation, and extrapyramidal syndrome.

Anas M. Alazami; Amr Al-Saif; Abdulaziz Al-Semari; Saeed Bohlega; Soumaya Zlitni; Fatema Alzahrani; Prashant Bavi; Namik Kaya; Dilek Colak; Hanif Khalak; Andy Baltus; Borut Peterlin; Sumita Danda; Kailash P. Bhatia; Susanne A. Schneider; Nadia A. Sakati; Christopher A. Walsh; Futwan Al-Mohanna; Brian F. Meyer; Fowzan S. Alkuraya

Hypogonadism, alopecia, diabetes mellitus, mental retardation, and extrapyramidal syndrome (also referenced as Woodhouse-Sakati syndrome) is a rare autosomal recessive multisystemic disorder. We have identified a founder mutation consisting of a single base-pair deletion in C2orf37 in eight families of Saudi origin. Three other loss-of-function mutations were subsequently discovered in patients of different ethnicities. The gene encodes a nucleolar protein of unknown function, and the cellular phenotype observed in patient lymphoblasts implicates a role for the nucleolus in the pathogenesis of this disease. Our findings expand the list of human disorders linked to the nucleolus and further highlight the developmental and/or maintenance functions of this organelle.


American Journal of Human Genetics | 2009

FREM1 Mutations Cause Bifid Nose, Renal Agenesis, and Anorectal Malformations Syndrome

Anas M. Alazami; Ranad Shaheen; Fatema Alzahrani; Katie Snape; Anand Saggar; B. Brinkmann; Prashant Bavi; Lihadh Al-Gazali; Fowzan S. Alkuraya

An autosomal-recessive syndrome of bifid nose and anorectal and renal anomalies (BNAR) was previously reported in a consanguineous Egyptian sibship. Here, we report the results of linkage analysis, on this family and on two other families with a similar phenotype, which identified a shared region of homozygosity on chromosome 9p22.2-p23. Candidate-gene analysis revealed homozygous frameshift and missense mutations in FREM1, which encodes an extracellular matrix component of basement membranes. In situ hybridization experiments demonstrated gene expression of Frem1 in the midline of E11.5 mouse embryos, in agreement with the observed cleft nose phenotype of our patients. FREM1 is part of a ternary complex that includes FRAS1 and FREM2, and mutations of the latter two genes have been reported to cause Fraser syndrome in mice and humans. The phenotypic variability previously reported for different Frem1 mouse mutants suggests that the apparently distinct phenotype of BNAR in humans may represent a previously unrecognized variant of Fraser syndrome.


American Journal of Human Genetics | 2013

Mutations in EOGT Confirm the Genetic Heterogeneity of Autosomal-Recessive Adams-Oliver Syndrome

Ranad Shaheen; Mona Aglan; Kim M. Keppler-Noreuil; Eissa Faqeih; Shinu Ansari; Kim Horton; Adel M. Ashour; Maha S. Zaki; Fatema Alzahrani; Anna M. Cueto-González; Ghada M.H. Abdel-Salam; Samia A. Temtamy; Fowzan S. Alkuraya

Adams-Oliver syndrome (AOS) is a rare, autosomal-dominant or -recessive disorder characterized primarily by aplasia cutis congenita and terminal transverse limb defects. Recently, we demonstrated that homozygous mutations in DOCK6 cause an autosomal-recessive form of AOS. In this study, we sought to determine the contribution of DOCK6 mutations to the etiology of AOS in several consanguineous families. In two of the five families studied, we identified two homozygous truncating mutations (a splice-site mutation and a frameshift duplication). DOCK6 sequencing revealed no mutation in the remaining three families, consistent with their autozygosity mapping and linkage-analysis results, which revealed a single candidate locus in 3p14.1 on three different haplotype backgrounds in the three families. Indeed, exome sequencing in one family revealed one missense mutation in EOGT (C3orf64), and subsequent targeted sequencing of this gene revealed a homozygous missense mutation and a homozygous frameshift deletion mutation in the other two families. EOGT encodes EGF-domain-specific O-linked N-acetylglucosamine (O-GlcNAc) transferase, which is involved in the O-GlcNAcylation (attachment of O-GlcNAc to serine and threonine residues) of a subset of extracellular EGF-domain-containing proteins. It has a documented role in epithelial-cell-matrix interactions in Drosophila, in which deficiency of its ortholog causes wing blistering. Our findings highlight a developmental role of O-GlcNAcylation in humans and expand the genetic heterogeneity of autosomal-recessive AOS.


Human Mutation | 2012

Molecular characterization of Joubert syndrome in Saudi Arabia.

Anas M. Alazami; Muneera J. Alshammari; Mustafa A. Salih; Fatema Alzahrani; Hadia Hijazi; Mohammed Z. Seidahmed; Leen Abu Safieh; Mazhor Al-Dosary; Arif O. Khan; Fowzan S. Alkuraya

Joubert syndrome (JS) is a ciliopathy that is defined primarily by typical cerebellar structural and ocular motility defects. The genetic heterogeneity of this condition is significant with 16 genes identified to date. We have used a combination of autozygome‐guided candidate gene mutation analysis and exome sequencing to identify the causative mutation in a series of 12 families. The autozygome approach identified mutations in RPGRIP1L, AHI1, TMEM237, and CEP290, while exome sequencing revealed families with truncating mutations in TCTN1 and C5ORF42. Our study, the largest comprehensive molecular series on JS, provides independent confirmation of the recently reported TCTN1, TMEM237, and C5ORF42 as bona fide JS disease genes, and expands the allelic heterogeneity of this disease. Hum Mutat 33:1423–1428, 2012.


Human Mutation | 2012

Loss of function mutation in LARP7, chaperone of 7SK ncRNA, causes a syndrome of facial dysmorphism, intellectual disability, and primordial dwarfism.

Anas M. Alazami; Mohammad Al-Owain; Fatema Alzahrani; Taghreed Shuaib; Hussain Al-Shamrani; Yahya H. Al-Falki; Saleh M. Al-Qahtani; Tarfa Al-Sheddi; Dilek Colak; Fowzan S. Alkuraya

Primordial dwarfism (PD) is a clinically and genetically heterogeneous condition. Various molecular mechanisms are known to underlie the disease including impaired mitotic mechanics, abnormal IGF2 expression, perturbed DNA damage response, defective spliceosomal machinery, and abnormal replication licensing. Here, we describe a syndromic form of PD associated with severe intellectual disability and distinct facial features in a large multiplex Saudi family. Analysis reveals a novel underlying mechanism for PD involving depletion of 7SK, an abundant cellular noncoding RNA (ncRNA), due to mutation of its chaperone LARP7. We show that 7SK levels are tightly linked to LARP7 expression across cell lines, and that this chaperone is ubiquitously expressed in the mouse embryo. The 7SK is known to influence the expression of a wide array of genes through its inhibitory effect on the positive transcription elongation factor b (P‐TEFb) as well as its competing role in HMGA1‐mediated transcriptional regulation. This study documents a critical role played by ncRNA in human development and adds to the growing list of molecular mechanisms that, when perturbed, converge on the PD phenotype. Hum Mutat 33:1429–1434, 2012.


Human Genetics | 2016

Expanding the clinical and genetic heterogeneity of hereditary disorders of connective tissue.

Anas M. Alazami; Sarah M. Al-Qattan; Eissa Faqeih; Amal Alhashem; Muneera J. Alshammari; Fatema Alzahrani; Mohammed S. Al-Dosari; Nisha Patel; Afaf Alsagheir; Bassam Bin-Abbas; Hamad Al-Zaidan; Abdulmonem Alsiddiky; Nasser Alharbi; Majid Alfadhel; Amal Y. Kentab; Riza Daza; Martin Kircher; Jay Shendure; Mais Hashem; Saif Alshahrani; Zuhair Rahbeeni; Ola Khalifa; Ranad Shaheen; Fowzan S. Alkuraya

Ehlers–Danlos syndrome (EDS) describes a group of clinical entities in which the connective tissue, primarily that of the skin, joint and vessels, is abnormal, although the resulting clinical manifestations can vary widely between the different historical subtypes. Many cases of hereditary disorders of connective tissue that do not seem to fit these historical subtypes exist. The aim of this study is to describe a large series of patients with inherited connective tissue disorders evaluated by our clinical genetics service and for whom a likely causal variant was identified. In addition to clinical phenotyping, patients underwent various genetic tests including molecular karyotyping, candidate gene analysis, autozygome analysis, and whole-exome and whole-genome sequencing as appropriate. We describe a cohort of 69 individuals representing 40 families, all referred because of suspicion of an inherited connective tissue disorder by their primary physician. Molecular lesions included variants in the previously published disease genes B3GALT6, GORAB, ZNF469, B3GAT3, ALDH18A1, FKBP14, PYCR1, CHST14 and SPARC with interesting variations on the published clinical phenotypes. We also describe the first recessive EDS-like condition to be caused by a recessive COL1A1 variant. In addition, exome capture in a familial case identified a homozygous truncating variant in a novel and compelling candidate gene, AEBP1. Finally, we also describe a distinct novel clinical syndrome of cutis laxa and marked facial features and propose ATP6V1E1 and ATP6V0D2 (two subunits of vacuolar ATPase) as likely candidate genes based on whole-genome and whole-exome sequencing of the two families with this new clinical entity. Our study expands the clinical spectrum of hereditary disorders of connective tissue and adds three novel candidate genes including two that are associated with a highly distinct syndrome.


American Journal of Medical Genetics Part A | 2010

Mutation of CANT1 causes Desbuquois dysplasia.

Maha Faden; Fatema Alzahrani; Dia Arafah; Fowzan S. Alkuraya

Desbuquois dysplasia is an autosomal recessive dysplasia characterized by severe growth restriction and distinct hand and proximal femur appearance in addition to cognitive impairment. The critical interval for this disease has been mapped to 17q25.3 using homozygosity mapping. We have identified a newborn with classical features of the disease whose parents are first cousins. Assuming genetic homogeneity of this disorder, we were able to narrow the critical interval to a region that only contained 10 annotated genes by combining the results of our homozygosity mapping with those of others. Serial sequencing of the genes contained within the interval revealed a 5 bp duplication in Calcium‐Activated Nucleotidase 1 gene (CANT1), consistent with the very recent report by Huber et al. [Huber et al. (2009); Am J Hum Genet 85:706–710]. This report cements the role of CANT1 in the causation of this dysplasia and demonstrates the high value of even single cases in the setting of genetically homogeneous disorders when homozygosity mapping is used.


Genetics in Medicine | 2016

Accelerating matchmaking of novel dysmorphology syndromes through clinical and genomic characterization of a large cohort

Ranad Shaheen; Nisha Patel; Hanan E. Shamseldin; Fatema Alzahrani; Ruah Al-Yamany; Agaadir Almoisheer; Nour Ewida; Shamsa Anazi; Maha Alnemer; Mohamed Elsheikh; Khaled Alfaleh; Muneera J. Alshammari; Amal Alhashem; Abdullah A. Alangari; Mustafa A. Salih; Martin Kircher; Riza Daza; Niema Ibrahim; Salma M. Wakil; Ahmed Alaqeel; Ikhlas Altowaijri; Jay Shendure; Amro Al-Habib; Eissa Faqieh; Fowzan S. Alkuraya

Purpose:Dysmorphology syndromes are among the most common referrals to clinical genetics specialists. Inability to match the dysmorphology pattern to a known syndrome can pose a major diagnostic challenge. With an aim to accelerate the establishment of new syndromes and their genetic etiology, we describe our experience with multiplex consanguineous families that appeared to represent novel autosomal recessive dysmorphology syndromes at the time of evaluation.Methods:Combined autozygome/exome analysis of multiplex consanguineous families with apparently novel dysmorphology syndromes.Results:Consistent with the apparent novelty of the phenotypes, our analysis revealed a strong candidate variant in genes that were novel at the time of the analysis in the majority of cases, and 10 of these genes are published here for the first time as novel candidates (CDK9, NEK9, ZNF668, TTC28, MBL2, CADPS, CACNA1H, HYAL2, CTU2, and C3ORF17). A significant minority of the phenotypes (6/31, 19%), however, were caused by genes known to cause Mendelian phenotypes, thus expanding the phenotypic spectrum of the diseases linked to these genes. The conspicuous inheritance pattern and the highly specific phenotypes appear to have contributed to the high yield (90%) of plausible molecular diagnoses in our study cohort.Conclusion:Reporting detailed clinical and genomic analysis of a large series of apparently novel dysmorphology syndromes will likely lead to a trend to accelerate the establishment of novel syndromes and their underlying genes through open exchange of data for the benefit of patients, their families, health-care providers, and the research community.Genet Med 18 7, 686–695.


Human Genetics | 2015

LOXL3 , encoding lysyl oxidase-like 3, is mutated in a family with autosomal recessive Stickler syndrome

Fatema Alzahrani; Selwa A. Al Hazzaa; Hamsa Tayeb; Fowzan S. Alkuraya

Stickler syndrome (SS) is a collagenopathy characterized by arthropathy and vitreoretinopathy with high myopia and cleft palate as common features. In a family with an autosomal recessive SS that does not map to genes known to cause autosomal recessive forms of SS, we combined autozygome and exome analysis to identify a novel missense variant in LOXL3 as the likely candidate cause. LOXL3 cross-links collagen II and its morphants phenocopy the craniofacial defects characteristic of collagen XI deficiency. We propose LOXL3 as a novel candidate gene for autosomal recessive SS.

Collaboration


Dive into the Fatema Alzahrani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anas M. Alazami

King Abdulaziz City for Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nisha Patel

Oklahoma Medical Research Foundation

View shared research outputs
Researchain Logo
Decentralizing Knowledge