Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fatimah Ibrahim is active.

Publication


Featured researches published by Fatimah Ibrahim.


Sensors | 2014

The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases.

Sami F. Khalil; Mas S. Mohktar; Fatimah Ibrahim

Bioimpedance analysis is a noninvasive, low cost and a commonly used approach for body composition measurements and assessment of clinical condition. There are a variety of methods applied for interpretation of measured bioimpedance data and a wide range of utilizations of bioimpedance in body composition estimation and evaluation of clinical status. This paper reviews the main concepts of bioimpedance measurement techniques including the frequency based, the allocation based, bioimpedance vector analysis and the real time bioimpedance analysis systems. Commonly used prediction equations for body composition assessment and influence of anthropometric measurements, gender, ethnic groups, postures, measurements protocols and electrode artifacts in estimated values are also discussed. In addition, this paper also contributes to the deliberations of bioimpedance analysis assessment of abnormal loss in lean body mass and unbalanced shift in body fluids and to the summary of diagnostic usage in different kinds of conditions such as cardiac, pulmonary, renal, and neural and infection diseases.


PLOS ONE | 2013

Vacuum/Compression Valving (VCV) Using Parrafin-Wax on a Centrifugal Microfluidic CD Platform

Wisam Al-Faqheri; Fatimah Ibrahim; Tzer Hwai Gilbert Thio; Jacob Moebius; Karunan Joseph; Hamzah Arof; Marc Madou

This paper introduces novel vacuum/compression valves (VCVs) utilizing paraffin wax. A VCV is implemented by sealing the venting channel/hole with wax plugs (for normally-closed valve), or to be sealed by wax (for normally-open valve), and is activated by localized heating on the CD surface. We demonstrate that the VCV provides the advantages of avoiding unnecessary heating of the sample/reagents in the diagnostic process, allowing for vacuum sealing of the CD, and clear separation of the paraffin wax from the sample/reagents in the microfluidic process. As a proof of concept, the microfluidic processes of liquid flow switching and liquid metering is demonstrated with the VCV. Results show that the VCV lowers the required spinning frequency to perform the microfluidic processes with high accuracy and ease of control.


Computer Methods and Programs in Biomedicine | 2006

Intelligent classification of electrocardiogram (ECG) signal using extended Kalman Filter (EKF) based neuro fuzzy system

Yeong Pong Meau; Fatimah Ibrahim; Selvanathan Narainasamy; Razali Omar

This study presents the development of a hybrid system consisting of an ensemble of Extended Kalman Filter (EKF) based Multi Layer Perceptron Network (MLPN) and a one-pass learning Fuzzy Inference System using Look-up Table Scheme for the recognition of electrocardiogram (ECG) signals. This system can distinguish various types of abnormal ECG signals such as Ventricular Premature Cycle (VPC), T wave inversion (TINV), ST segment depression (STDP), and Supraventricular Tachycardia (SVT) from normal sinus rhythm (NSR) ECG signal.


Sensors | 2014

Application of Wireless Power Transmission Systems in Wireless Capsule Endoscopy: An Overview

Md. Rubel Basar; Mohd Yazed Ahmad; Jongman Cho; Fatimah Ibrahim

Wireless capsule endoscopy (WCE) is a promising technology for direct diagnosis of the entire small bowel to detect lethal diseases, including cancer and obscure gastrointestinal bleeding (OGIB). To improve the quality of diagnosis, some vital specifications of WCE such as image resolution, frame rate and working time need to be improved. Additionally, future multi-functioning robotic capsule endoscopy (RCE) units may utilize advanced features such as active system control over capsule motion, drug delivery systems, semi-surgical tools and biopsy. However, the inclusion of the above advanced features demands additional power that make conventional power source methods impractical. In this regards, wireless power transmission (WPT) system has received attention among researchers to overcome this problem. Systematic reviews on techniques of using WPT for WCE are limited, especially when involving the recent technological advancements. This paper aims to fill that gap by providing a systematic review with emphasis on the aspects related to the amount of transmitted power, the power transmission efficiency, the system stability and patient safety. It is noted that, thus far the development of WPT system for this WCE application is still in initial stage and there is room for improvements, especially involving system efficiency, stability, and the patient safety aspects.


Lab on a Chip | 2014

Latex micro-balloon pumping in centrifugal microfluidic platforms

Mohammad Mahdi Aeinehvand; Fatimah Ibrahim; S. W. Harun; Wisam Al-Faqheri; Tzer Hwai Gilbert Thio; Amin Kazemzadeh; Marc Madou

Centrifugal microfluidic platforms have emerged as point-of-care diagnostic tools. However, the unidirectional nature of the centrifugal force limits the available space for multi-step processes on a single microfluidic disc. To overcome this limitation, a passive pneumatic pumping method actuated at high rotational speeds has been previously proposed to pump liquid against the centrifugal force. In this paper, a novel micro-balloon pumping method that relies on elastic energy stored in a latex membrane is introduced. It operates at low rotational speeds and pumps a larger volume of liquid towards the centre of the disc. Two different micro-balloon pumping mechanisms have been designed to study the pump performance at a range of rotational frequencies from 0 to 1500 rpm. The behaviour of the micro-balloon pump on the centrifugal microfluidic platforms has been theoretically analysed and compared with the experimental data. The experimental data show that the developed pumping method dramatically decreases the required rotational speed to pump liquid compared to the previously developed pneumatic pumping methods. It also shows that within a range of rotational speed, a desirable volume of liquid can be stored and pumped by adjusting the size of the micro-balloon.


Analyst | 2014

Recent advances in surface functionalization techniques on polymethacrylate materials for optical biosensor applications

Samira Hosseini; Fatimah Ibrahim; Ivan Djordjevic; Leo H. Koole

Biosensor chips for immune-based assay systems have been investigated for their application in early diagnostics. The development of such systems strongly depends on the effective protein immobilization on polymer substrates. In order to achieve this complex heterogeneous interaction the polymer surface must be functionalized with chemical groups that are reactive towards proteins in a way that surface functional groups (such as carboxyl, -COOH; amine, -NH2; and hydroxyl, -OH) chemically or physically anchor the proteins to the polymer platform. Since the proteins are very sensitive towards their environment and can easily lose their activity when brought in close proximity to the solid surface, effective surface functionalization and high level of control over surface chemistry present the most important steps in the fabrication of biosensors. This paper reviews recent developments in surface functionalization and preparation of polymethacrylates for protein immobilization. Due to their versatility and cost effectiveness, this particular group of plastic polymers is widely used both in research and in industry.


Medical & Biological Engineering & Computing | 2013

Theoretical development and critical analysis of burst frequency equations for passive valves on centrifugal microfluidic platforms.

Tzer Hwai Gilbert Thio; Salar Soroori; Fatimah Ibrahim; Wisam Al-Faqheri; Norhayati Soin; Lawrence Kulinsky; Marc Madou

This paper presents a theoretical development and critical analysis of the burst frequency equations for capillary valves on a microfluidic compact disc (CD) platform. This analysis includes background on passive capillary valves and the governing models/equations that have been developed to date. The implicit assumptions and limitations of these models are discussed. The fluid meniscus dynamics before bursting is broken up into a multi-stage model and a more accurate version of the burst frequency equation for the capillary valves is proposed. The modified equations are used to evaluate the effects of various CD design parameters such as the hydraulic diameter, the height to width aspect ratio, and the opening wedge angle of the channel on the burst pressure.


Computer Methods and Programs in Biomedicine | 2005

A novel dengue fever (DF) and dengue haemorrhagic fever (DHF) analysis using artificial neural network (ANN)

Fatimah Ibrahim; Mohd Nasir Taib; Wan Abu Bakar Wan Abas; Chan Chong Guan; Saadiah Sulaiman

Dengue fever (DF) is an acute febrile viral disease frequently presented with headache, bone or joint and muscular pains, and rash. A significant percentage of DF patients develop a more severe form of disease, known as dengue haemorrhagic fever (DHF). DHF is the complication of DF. The main pathophysiology of DHF is the development of plasma leakage from the capillary, resulting in haemoconcentration, ascites, and pleural effusion that may lead to shock following defervescence of fever. Therefore, accurate prediction of the day of defervescence of fever is critical for clinician to decide on patient management strategy. To date, no known literature describes of any attempt to predict the day of defervescence of fever in DF patients. This paper describes a non-invasive prediction system for predicting the day of defervescence of fever in dengue patients using artificial neural network. The developed system bases its prediction solely on the clinical symptoms and signs and uses the multilayer feed-forward neural networks (MFNN). The results show that the proposed system is able to predict the day of defervescence in dengue patients with 90% prediction accuracy.


Biosensors and Bioelectronics | 2015

Biosensing enhancement of dengue virus using microballoon mixers on centrifugal microfluidic platforms.

Mohammad Mahdi Aeinehvand; Fatimah Ibrahim; S. W. Harun; Ivan Djordjevic; Samira Hosseini; Hussin A. Rothan; Rohana Yusof; Marc Madou

Dengue is the current leading cause of death among children in several Latin American and Asian countries. Due to poverty in areas where the disease is prevalent and the high cost of conventional diagnostic systems, low cost devices are needed to reduce the burden caused by dengue infection. Centrifugal microfluidic platforms are an alternative solution to reduce costs and increase the availability of a rapid diagnostic system. The rate of chemical reactions in such devices often depends on the efficiency of the mixing techniques employed in their microfluidic networks. This paper introduces a micromixer that operates by the expansion and contraction of a microballoon to produce a consistent periodical 3D reciprocating flow. We established that microballoons reduced mixing time of 12 μl liquids from 170 min, for diffusional mixing, to less than 23 s. We have also tested the effect of the microballoon mixers on the detection of the dengue virus. The results indicate that employing a microballoon mixer enhances the detection sensitivity of the dengue virus by nearly one order of magnitude compared to the conventional ELISA method.


IEEE Transactions on Instrumentation and Measurement | 2005

A novel approach to classify risk in dengue hemorrhagic fever (DHF) using bioelectrical impedance analysis (BIA)

Fatimah Ibrahim; Mohd Nasir Taib; Wan Abu Bakar Wan Abas; Chan Chong Guan; Saadiah Sulaiman

This paper introduces a novel approach to classify the risk in dengue hemorrhagic fever (DHF) patients using the bioelectrical impedance analysis (BIA) technique. This in vivo technique involves the application of a small average constant current of less than 1 mA at a single frequency of 50 kHz through the human body, and measurement of the bodys bioelectrical resistance (R), phase angle (/spl alpha/), body capacitance (BC) and capacitive reactance (X/sub c/) via four surface electrodes. BIA measurements have been conducted on 184 (97 males and 87 females) serological confirmed dengue patients during their hospitalization in University Kebangsaan Malaysia Hospital, Malaysia. The patients included in the study were DHF I-IV according to World Health Organization criteria. Univariate analysis of variance is used for assessing the relationship between gender and group with the bioelectrical tissue conductivity (BETC) parameters. Experimental findings show that BETC, as reflected by reactance, is the key determinant indicator for classifying risk category in the DHF patients. Hence, this novel approach of the BIA technique can provide a rapid, noninvasive, and promising method for classifying and evaluating the risk of the DHF patients.

Collaboration


Dive into the Fatimah Ibrahim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc Madou

University of California

View shared research outputs
Top Co-Authors

Avatar

Mohd Nasir Taib

Universiti Teknologi MARA

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge