Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fatma Kaplan is active.

Publication


Featured researches published by Fatma Kaplan.


PLOS ONE | 2012

Subterranean, Herbivore-Induced Plant Volatile Increases Biological Control Activity of Multiple Beneficial Nematode Species in Distinct Habitats

Jared G. Ali; Hans T. Alborn; Raquel Campos-Herrera; Fatma Kaplan; Larry W. Duncan; Cesar Rodriguez-Saona; Albrecht M. Koppenhöfer; Lukasz L. Stelinski

While the role of herbivore-induced volatiles in plant-herbivore-natural enemy interactions is well documented aboveground, new evidence suggests that belowground volatile emissions can protect plants by attracting entomopathogenic nematodes (EPNs). However, due to methodological limitations, no study has previously detected belowground herbivore-induced volatiles in the field or quantified their impact on attraction of diverse EPN species. Here we show how a belowground herbivore-induced volatile can enhance mortality of agriculturally significant root pests. First, in real time, we identified pregeijerene (1,5-dimethylcyclodeca-1,5,7-triene) from citrus roots 9–12 hours after initiation of larval Diaprepes abbreviatus feeding. This compound was also detected in the root zone of mature citrus trees in the field. Application of collected volatiles from weevil-damaged citrus roots attracted native EPNs and increased mortality of beetle larvae (D. abbreviatus) compared to controls in a citrus orchard. In addition, field applications of isolated pregeijerene caused similar results. Quantitative real-time PCR revealed that pregeijerene increased pest mortality by attracting four species of naturally occurring EPNs in the field. Finally, we tested the generality of this root-zone signal by application of pregeijerene in blueberry fields; mortality of larvae (Galleria mellonella and Anomala orientalis) again increased by attracting naturally occurring populations of an EPN. Thus, this specific belowground signal attracts natural enemies of widespread root pests in distinct agricultural systems and may have broad potential in biological control of root pests.


PLOS ONE | 2012

Transcriptional and Metabolic Insights into the Differential Physiological Responses of Arabidopsis to Optimal and Supraoptimal Atmospheric CO2

Fatma Kaplan; Wei Zhao; Jeffrey T. Richards; Raymond M. Wheeler; Charles L. Guy; Lanfang H. Levine

Background In tightly closed human habitats such as space stations, locations near volcano vents and closed culture vessels, atmospheric CO2 concentration may be 10 to 20 times greater than Earth’s current ambient levels. It is known that super-elevated (SE) CO2 (>1,200 µmol mol−1) induces physiological responses different from that of moderately elevated CO2 (up to 1,200 µmol mol−1), but little is known about the molecular responses of plants to supra-optimal [CO2]. Methodology/Principal Findings To understand the underlying molecular causes for differential physiological responses, metabolite and transcript profiles were analyzed in aerial tissue of Arabidopsis plants, which were grown under ambient atmospheric CO2 (400 µmol mol−1), elevated CO2 (1,200 µmol mol−1) and SE CO2 (4,000 µmol mol−1), at two developmental stages early and late vegetative stage. Transcript and metabolite profiling revealed very different responses to elevated versus SE [CO2]. The transcript profiles of SE CO2 treated plants were closer to that of the control. Development stage had a clear effect on plant molecular response to elevated and SE [CO2]. Photosynthetic acclimation in terms of down-regulation of photosynthetic gene expression was observed in response to elevated [CO2], but not that of SE [CO2] providing the first molecular evidence that there appears to be a fundamental disparity in the way plants respond to elevated and SE [CO2]. Although starch accumulation was induced by both elevated and SE [CO2], the increase was less at the late vegetative stage and accompanied by higher soluble sugar content suggesting an increased starch breakdown to meet sink strength resulting from the rapid growth demand. Furthermore, many of the elevated and SE CO2-responsive genes found in the present study are also regulated by plant hormone and stress. Conclusions/Significance This study provides new insights into plant acclimation to elevated and SE [CO2] during development and how this relates to stress, sugar and hormone signaling.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Sex-specific mating pheromones in the nematode Panagrellus redivivus

Andrea Choe; Tatsuji Chuman; Stephan H. von Reuss; Aaron T. Dossey; Joshua J. Yim; Ramadan Ajredini; Adam Kolawa; Fatma Kaplan; Hans T. Alborn; Peter E. A. Teal; Frank C. Schroeder; Paul W. Sternberg; Arthur S. Edison

Nematodes use an extensive chemical language based on glycosides of the dideoxysugar ascarylose for developmental regulation (dauer formation), male sex attraction, aggregation, and dispersal. However, no examples of a female- or hermaphrodite-specific sex attractant have been identified to date. In this study, we investigated the pheromone system of the gonochoristic sour paste nematode Panagrellus redivivus, which produces sex-specific attractants of the opposite sex. Activity-guided fractionation of the P. redivivus exometabolome revealed that males are strongly attracted to ascr#1 (also known as daumone), an ascaroside previously identified from Caenorhabditis elegans hermaphrodites. Female P. redivivus are repelled by high concentrations of ascr#1 but are specifically attracted to a previously unknown ascaroside that we named dhas#18, a dihydroxy derivative of the known ascr#18 and an ascaroside that features extensive functionalization of the lipid-derived side chain. Targeted profiling of the P. redivivus exometabolome revealed several additional ascarosides that did not induce strong chemotaxis. We show that P. redivivus females, but not males, produce the male-attracting ascr#1, whereas males, but not females, produce the female-attracting dhas#18. These results show that ascaroside biosynthesis in P. redivivus is highly sex-specific. Furthermore, the extensive side chain functionalization in dhas#18, which is reminiscent of polyketide-derived natural products, indicates unanticipated biosynthetic capabilities in nematodes.


PLOS ONE | 2012

Interspecific nematode signals regulate dispersal behavior.

Fatma Kaplan; Hans T. Alborn; Stephan H. von Reuss; Ramadan Ajredini; Jared G. Ali; Faruk Akyazi; Lukasz L. Stelinski; Arthur S. Edison; Frank C. Schroeder; Peter E. A. Teal

Background Dispersal is an important nematode behavior. Upon crowding or food depletion, the free living bacteriovorus nematode Caenorhabditis elegans produces stress resistant dispersal larvae, called dauer, which are analogous to second stage juveniles (J2) of plant parasitic Meloidogyne spp. and infective juveniles (IJ)s of entomopathogenic nematodes (EPN), e.g., Steinernema feltiae. Regulation of dispersal behavior has not been thoroughly investigated for C. elegans or any other nematode species. Based on the fact that ascarosides regulate entry in dauer stage as well as multiple behaviors in C. elegans adults including mating, avoidance and aggregation, we hypothesized that ascarosides might also be involved in regulation of dispersal behavior in C. elegans and for other nematodes such as IJ of phylogenetically related EPNs. Methodology/Principal Findings Liquid chromatography-mass spectrometry analysis of C. elegans dauer conditioned media, which shows strong dispersing activity, revealed four known ascarosides (ascr#2, ascr#3, ascr#8, icas#9). A synthetic blend of these ascarosides at physiologically relevant concentrations dispersed C. elegans dauer in the presence of food and also caused dispersion of IJs of S. feltiae and J2s of plant parasitic Meloidogyne spp. Assay guided fractionation revealed structural analogs as major active components of the S. feltiae (ascr#9) and C. elegans (ascr#2) dispersal blends. Further analysis revealed ascr#9 in all Steinernema spp. and Heterorhabditis spp. infected insect host cadavers. Conclusions/Significance Ascaroside blends represent evolutionarily conserved, fundamentally important communication systems for nematodes from diverse habitats, and thus may provide sustainable means for control of parasitic nematodes.


Journal of Chemical Ecology | 2009

Bacterial Attraction and Quorum Sensing Inhibition in Caenorhabditis elegans Exudates

Fatma Kaplan; Dayakar V. Badri; Cherian Zachariah; Ramadan Ajredini; Francisco J. Sandoval; Sanja Roje; Lanfang H. Levine; Fengli Zhang; Steven L. Robinette; Hans T. Alborn; Wei Zhao; Michael Stadler; Rathika Nimalendran; Aaron T. Dossey; Rafael Brüschweiler; Jorge M. Vivanco; Arthur S. Edison

Caenorhabditis elegans, a bacterivorous nematode, lives in complex rotting fruit, soil, and compost environments, and chemical interactions are required for mating, monitoring population density, recognition of food, avoidance of pathogenic microbes, and other essential ecological functions. Despite being one of the best-studied model organisms in biology, relatively little is known about the signals that C. elegans uses to interact chemically with its environment or as defense. C. elegans exudates were analyzed by using several analytical methods and found to contain 36 common metabolites that include organic acids, amino acids, and sugars, all in relatively high abundance. Furthermore, the concentrations of amino acids in the exudates were dependent on developmental stage. The C. elegans exudates were tested for bacterial chemotaxis using Pseudomonas putida (KT2440), a plant growth promoting rhizobacterium, Pseudomonas aeruginosa (PAO1), a soil bacterium pathogenic to C. elegans, and Escherichia coli (OP50), a non-motile bacterium tested as a control. The C. elegans exudates attracted the two Pseudomonas species, but had no detectable antibacterial activity against P. aeruginosa. To our surprise, the exudates of young adult and adult life stages of C. elegans exudates inhibited quorum sensing in the reporter system based on the LuxR bacterial quorum sensing (QS) system, which regulates bacterial virulence and other factors in Vibrio fischeri. We were able to fractionate the QS inhibition and bacterial chemotaxis activities, thus demonstrating that these activities are chemically distinct. Our results demonstrate that C. elegans can attract its bacterial food and has the potential of partially regulating the virulence of bacterial pathogens by inhibiting specific QS systems.


Journal of Natural Products | 2014

Identification of methyl farnesoate from the hemolymph of insects.

Peter E. A. Teal; Davy Jones; Grace Jones; Baldwyn Torto; Nyasembe; Borgemeister C; Hans T. Alborn; Fatma Kaplan; Drion G. Boucias; Verena-Ulrike Lietze

Methyl farnesoate, [methyl (2E,6E)-3,7,11-trimethyldodeca-2,6,10-trienoate (1)] has not been thought be present in the hemolymph of insects, although it is the immediate biosynthetic precursor of the circulating insect hormone juvenile hormone III (methyl (2E,6E)-10,11-epoxy-3,7,11-trimethyl-2,6-dodecadienoate) (2). Compound 1 was identified from the hemolymph obtained from five orders of insects. Identification of 1 from the American bird grasshopper was facilitated using both electron impact and chemical-ionization GC-MS, GC-FTIR, and 2D NMR techniques. The identifications from other insects were made using GC-MS, and the amounts of all were quantified using LIM-CI-GC-MS. The ratios of 1 and 2 varied in these insects during different developmental stages. The present results underscore the need for further studies on methyl farnesoate (1) as a circulating hormone in insects.


PLOS ONE | 2015

The Invasive American Weed Parthenium hysterophorus Can Negatively Impact Malaria Control in Africa

Vincent O. Nyasembe; Xavier Cheseto; Fatma Kaplan; Woodbridge A. Foster; Peter E. A. Teal; James H. Tumlinson; Christian Borgemeister; Baldwyn Torto

The direct negative effects of invasive plant species on agriculture and biodiversity are well known, but their indirect effects on human health, and particularly their interactions with disease-transmitting vectors, remains poorly explored. This study sought to investigate the impact of the invasive Neotropical weed Parthenium hysterophorus and its toxins on the survival and energy reserves of the malaria vector Anopheles gambiae. In this study, we compared the fitness of An. gambiae fed on three differentially attractive mosquito host plants and their major toxins; the highly aggressive invasive Neotropical weed Parthenium hysterophorus (Asteraceae) in East Africa and two other adapted weeds, Ricinus communis (Euphorbiaceae) and Bidens pilosa (Asteraceae). Our results showed that female An. gambiae fitness varied with host plants as females survived better and accumulated substantial energy reserves when fed on P. hysterophorus and R. communis compared to B. pilosa. Females tolerated parthenin and 1-phenylhepta-1, 3, 5-triyne, the toxins produced by P. hysterophorus and B. pilosa, respectively, but not ricinine produced by R. communis. Given that invasive plants like P. hysterophorus can suppress or even replace less competitive species that might be less suitable host-plants for arthropod disease vectors, the spread of invasive plants could lead to higher disease transmission. Parthenium hysterophorus represents a possible indirect effect of invasive plants on human health, which underpins the need to include an additional health dimension in risk-analysis modelling for invasive plants.


Journal of Agricultural and Food Chemistry | 2015

Toxic Ipomeamarone accumulation in healthy parts of Sweetpotato (Ipomoea batatas L. Lam) storage roots upon infection by Rhizopus stolonifer.

Lydia Wamalwa; Xavier Cheseto; Elizabeth Ouna; Fatma Kaplan; Nguya K. Maniania; Jesse Machuka; Baldwyn Torto; Marc Ghislain

Furanoterpenoid accumulation in response to microbial attack in rotting sweetpotatoes has long been linked to deaths and lung edema of cattle in the world. However, it is not known whether furanoterpenoid ipomeamarone accumulates in the healthy-looking parts of infected sweetpotato storage roots. This is critical for effective utilization as animal feed and assessment of the potential negative impact on human health. Therefore, we first identified the fungus from infected sweetpotatoes as a Rhizopus stolonifer strain and then used it to infect healthy sweetpotato storage roots for characterization of furanoterpenoid content. Ipomeamarone and its precursor, dehydroipomeamarone, were identified through spectroscopic analyses, and detected in all samples and controls at varying concentrations. Ipomeamarone concentration was at toxic levels in healthy-looking parts of some samples. Our study provides fundamental information on furanoterpenoids in relation to high levels reported that could subsequently affect cattle on consumption and high ipomeamarone levels in healthy-looking parts.


PLOS ONE | 2011

Ascaroside Expression in Caenorhabditis elegans Is Strongly Dependent on Diet and Developmental Stage

Fatma Kaplan; Jagan Srinivasan; Parag Mahanti; Ramadan Ajredini; Omer Durak; Rathika Nimalendran; Paul W. Sternberg; Peter E. A. Teal; Frank C. Schroeder; Arthur S. Edison; Hans T. Alborn


Journal of Biological Chemistry | 2002

Metabolic engineering in yeast demonstrates that S-adenosylmethionine controls flux through the methylenetetrahydrofolate reductase reaction in vivo.

Sanja Roje; Sherwin Y. Chan; Fatma Kaplan; Rhonda K. Raymond; Donald W. Horne; Dean R. Appling; Andrew D. Hanson

Collaboration


Dive into the Fatma Kaplan's collaboration.

Top Co-Authors

Avatar

Hans T. Alborn

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Peter E. A. Teal

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Frank C. Schroeder

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Choe

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Paul W. Sternberg

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Sanja Roje

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Baldwyn Torto

International Centre of Insect Physiology and Ecology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge