Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ramadan Ajredini is active.

Publication


Featured researches published by Ramadan Ajredini.


Nature | 2008

A blend of small molecules regulates both mating and development in Caenorhabditis elegans

Jagan Srinivasan; Fatma Kaplan; Ramadan Ajredini; Cherian Zachariah; Hans T. Alborn; Peter E. A. Teal; Rabia U. Malik; Arthur S. Edison; Paul W. Sternberg; Frank C. Schroeder

In many organisms, population-density sensing and sexual attraction rely on small-molecule-based signalling systems. In the nematode Caenorhabditis elegans, population density is monitored through specific glycosides of the dideoxysugar ascarylose (the ‘ascarosides’) that promote entry into an alternative larval stage, the non-feeding and highly persistent dauer stage. In addition, adult C. elegans males are attracted to hermaphrodites by a previously unidentified small-molecule signal. Here we show, by means of combinatorial activity-guided fractionation of the C. elegans metabolome, that the mating signal consists of a synergistic blend of three dauer-inducing ascarosides, which we call ascr#2, ascr#3 and ascr#4. This blend of ascarosides acts as a potent male attractant at very low concentrations, whereas at the higher concentrations required for dauer formation the compounds no longer attract males and instead deter hermaphrodites. The ascarosides ascr#2 and ascr#3 carry different, but overlapping, information, as ascr#3 is more potent as a male attractant than ascr#2, whereas ascr#2 is slightly more potent than ascr#3 in promoting dauer formation. We demonstrate that ascr#2, ascr#3 and ascr#4 are strongly synergistic, and that two types of neuron, the amphid single-ciliated sensory neuron type K (ASK) and the male-specific cephalic companion neuron (CEM), are required for male attraction by ascr#3. On the basis of these results, male attraction and dauer formation in C. elegans appear as alternative behavioural responses to a common set of signalling molecules. The ascaroside signalling system thus connects reproductive and developmental pathways and represents a unique example of structure- and concentration-dependent differential activity of signalling molecules.


Analytical Chemistry | 2011

Hierarchical Alignment and Full Resolution Pattern Recognition of 2D NMR Spectra: Application to Nematode Chemical Ecology

Steven L. Robinette; Ramadan Ajredini; Hasan Rasheed; Abdulrahman Zeinomar; Frank C. Schroeder; Aaron T. Dossey; Arthur S. Edison

Nuclear magnetic resonance (NMR) is the most widely used nondestructive technique in analytical chemistry. In recent years, it has been applied to metabolic profiling due to its high reproducibility, capacity for relative and absolute quantification, atomic resolution, and ability to detect a broad range of compounds in an untargeted manner. While one-dimensional (1D) 1H NMR experiments are popular in metabolic profiling due to their simplicity and fast acquisition times, two-dimensional (2D) NMR spectra offer increased spectral resolution as well as atomic correlations, which aid in the assignment of known small molecules and the structural elucidation of novel compounds. Given the small number of statistical analysis methods for 2D NMR spectra, we developed a new approach for the analysis, information recovery, and display of 2D NMR spectral data. We present a native 2D peak alignment algorithm we term HATS, for hierarchical alignment of two-dimensional spectra, enabling pattern recognition (PR) using full-resolution spectra. Principle component analysis (PCA) and partial least squares (PLS) regression of full resolution total correlation spectroscopy (TOCSY) spectra greatly aid the assignment and interpretation of statistical pattern recognition results by producing back-scaled loading plots that look like traditional TOCSY spectra but incorporate qualitative and quantitative biological information of the resonances. The HATS-PR methodology is demonstrated here using multiple 2D TOCSY spectra of the exudates from two nematode species: Pristionchus pacificus and Panagrellus redivivus. We show the utility of this integrated approach with the rapid, semiautomated assignment of small molecules differentiating the two species and the identification of spectral regions suggesting the presence of species-specific compounds. These results demonstrate that the combination of 2D NMR spectra with full-resolution statistical analysis provides a platform for chemical and biological studies in cellular biochemistry, metabolomics, and chemical ecology.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Sex-specific mating pheromones in the nematode Panagrellus redivivus

Andrea Choe; Tatsuji Chuman; Stephan H. von Reuss; Aaron T. Dossey; Joshua J. Yim; Ramadan Ajredini; Adam Kolawa; Fatma Kaplan; Hans T. Alborn; Peter E. A. Teal; Frank C. Schroeder; Paul W. Sternberg; Arthur S. Edison

Nematodes use an extensive chemical language based on glycosides of the dideoxysugar ascarylose for developmental regulation (dauer formation), male sex attraction, aggregation, and dispersal. However, no examples of a female- or hermaphrodite-specific sex attractant have been identified to date. In this study, we investigated the pheromone system of the gonochoristic sour paste nematode Panagrellus redivivus, which produces sex-specific attractants of the opposite sex. Activity-guided fractionation of the P. redivivus exometabolome revealed that males are strongly attracted to ascr#1 (also known as daumone), an ascaroside previously identified from Caenorhabditis elegans hermaphrodites. Female P. redivivus are repelled by high concentrations of ascr#1 but are specifically attracted to a previously unknown ascaroside that we named dhas#18, a dihydroxy derivative of the known ascr#18 and an ascaroside that features extensive functionalization of the lipid-derived side chain. Targeted profiling of the P. redivivus exometabolome revealed several additional ascarosides that did not induce strong chemotaxis. We show that P. redivivus females, but not males, produce the male-attracting ascr#1, whereas males, but not females, produce the female-attracting dhas#18. These results show that ascaroside biosynthesis in P. redivivus is highly sex-specific. Furthermore, the extensive side chain functionalization in dhas#18, which is reminiscent of polyketide-derived natural products, indicates unanticipated biosynthetic capabilities in nematodes.


PLOS ONE | 2012

Interspecific nematode signals regulate dispersal behavior.

Fatma Kaplan; Hans T. Alborn; Stephan H. von Reuss; Ramadan Ajredini; Jared G. Ali; Faruk Akyazi; Lukasz L. Stelinski; Arthur S. Edison; Frank C. Schroeder; Peter E. A. Teal

Background Dispersal is an important nematode behavior. Upon crowding or food depletion, the free living bacteriovorus nematode Caenorhabditis elegans produces stress resistant dispersal larvae, called dauer, which are analogous to second stage juveniles (J2) of plant parasitic Meloidogyne spp. and infective juveniles (IJ)s of entomopathogenic nematodes (EPN), e.g., Steinernema feltiae. Regulation of dispersal behavior has not been thoroughly investigated for C. elegans or any other nematode species. Based on the fact that ascarosides regulate entry in dauer stage as well as multiple behaviors in C. elegans adults including mating, avoidance and aggregation, we hypothesized that ascarosides might also be involved in regulation of dispersal behavior in C. elegans and for other nematodes such as IJ of phylogenetically related EPNs. Methodology/Principal Findings Liquid chromatography-mass spectrometry analysis of C. elegans dauer conditioned media, which shows strong dispersing activity, revealed four known ascarosides (ascr#2, ascr#3, ascr#8, icas#9). A synthetic blend of these ascarosides at physiologically relevant concentrations dispersed C. elegans dauer in the presence of food and also caused dispersion of IJs of S. feltiae and J2s of plant parasitic Meloidogyne spp. Assay guided fractionation revealed structural analogs as major active components of the S. feltiae (ascr#9) and C. elegans (ascr#2) dispersal blends. Further analysis revealed ascr#9 in all Steinernema spp. and Heterorhabditis spp. infected insect host cadavers. Conclusions/Significance Ascaroside blends represent evolutionarily conserved, fundamentally important communication systems for nematodes from diverse habitats, and thus may provide sustainable means for control of parasitic nematodes.


Analytical Chemistry | 2013

Isotopic Ratio Outlier Analysis Global Metabolomics of Caenorhabditis elegans

Gregory S. Stupp; Chaevien S. Clendinen; Ramadan Ajredini; Mark A. Szewc; Timothy J. Garrett; Robert F. Menger; Richard A. Yost; Chris Beecher; Arthur S. Edison

We demonstrate the global metabolic analysis of Caenorhabditis elegans stress responses using a mass-spectrometry-based technique called isotopic ratio outlier analysis (IROA). In an IROA protocol, control and experimental samples are isotopically labeled with 95 and 5% (13)C, and the two sample populations are mixed together for uniform extraction, sample preparation, and LC-MS analysis. This labeling strategy provides several advantages over conventional approaches: (1) compounds arising from biosynthesis are easily distinguished from artifacts, (2) errors from sample extraction and preparation are minimized because the control and experiment are combined into a single sample, (3) measurement of both the molecular weight and the exact number of carbon atoms in each molecule provides extremely accurate molecular formulas, and (4) relative concentrations of all metabolites are easily determined. A heat-shock perturbation was conducted on C. elegans to demonstrate this approach. We identified many compounds that significantly changed upon heat shock, including several from the purine metabolism pathway. The metabolomic response information by IROA may be interpreted in the context of a wealth of genetic and proteomic information available for C. elegans . Furthermore, the IROA protocol can be applied to any organism that can be isotopically labeled, making it a powerful new tool in a global metabolomics pipeline.


Journal of Chemical Ecology | 2009

Bacterial Attraction and Quorum Sensing Inhibition in Caenorhabditis elegans Exudates

Fatma Kaplan; Dayakar V. Badri; Cherian Zachariah; Ramadan Ajredini; Francisco J. Sandoval; Sanja Roje; Lanfang H. Levine; Fengli Zhang; Steven L. Robinette; Hans T. Alborn; Wei Zhao; Michael Stadler; Rathika Nimalendran; Aaron T. Dossey; Rafael Brüschweiler; Jorge M. Vivanco; Arthur S. Edison

Caenorhabditis elegans, a bacterivorous nematode, lives in complex rotting fruit, soil, and compost environments, and chemical interactions are required for mating, monitoring population density, recognition of food, avoidance of pathogenic microbes, and other essential ecological functions. Despite being one of the best-studied model organisms in biology, relatively little is known about the signals that C. elegans uses to interact chemically with its environment or as defense. C. elegans exudates were analyzed by using several analytical methods and found to contain 36 common metabolites that include organic acids, amino acids, and sugars, all in relatively high abundance. Furthermore, the concentrations of amino acids in the exudates were dependent on developmental stage. The C. elegans exudates were tested for bacterial chemotaxis using Pseudomonas putida (KT2440), a plant growth promoting rhizobacterium, Pseudomonas aeruginosa (PAO1), a soil bacterium pathogenic to C. elegans, and Escherichia coli (OP50), a non-motile bacterium tested as a control. The C. elegans exudates attracted the two Pseudomonas species, but had no detectable antibacterial activity against P. aeruginosa. To our surprise, the exudates of young adult and adult life stages of C. elegans exudates inhibited quorum sensing in the reporter system based on the LuxR bacterial quorum sensing (QS) system, which regulates bacterial virulence and other factors in Vibrio fischeri. We were able to fractionate the QS inhibition and bacterial chemotaxis activities, thus demonstrating that these activities are chemically distinct. Our results demonstrate that C. elegans can attract its bacterial food and has the potential of partially regulating the virulence of bacterial pathogens by inhibiting specific QS systems.


Analytical Chemistry | 2015

(13)C NMR Metabolomics: INADEQUATE Network Analysis.

Chaevien S. Clendinen; Christian Pasquel; Ramadan Ajredini; Arthur S. Edison

The many advantages of (13)C NMR are often overshadowed by its intrinsically low sensitivity. Given that carbon makes up the backbone of most biologically relevant molecules, (13)C NMR offers a straightforward measurement of these compounds. Two-dimensional (13)C-(13)C correlation experiments like INADEQUATE (incredible natural abundance double quantum transfer experiment) are ideal for the structural elucidation of natural products and have great but untapped potential for metabolomics analysis. We demonstrate a new and semiautomated approach called INETA (INADEQUATE network analysis) for the untargeted analysis of INADEQUATE data sets using an in silico INADEQUATE database. We demonstrate this approach using isotopically labeled Caenorhabditis elegans mixtures.


Frontiers in Plant Science | 2015

An overview of methods using 13C for improved compound identification in metabolomics and natural products

Chaevien S. Clendinen; Gregory S. Stupp; Ramadan Ajredini; Brittany Lee-McMullen; Chris Beecher; Arthur S. Edison

Compound identification is a major bottleneck in metabolomics studies. In nuclear magnetic resonance (NMR) investigations, resonance overlap often hinders unambiguous database matching or de novo compound identification. In liquid chromatography-mass spectrometry (LC-MS), discriminating between biological signals and background artifacts and reliable determination of molecular formulae are not always straightforward. We have designed and implemented several NMR and LC-MS approaches that utilize 13C, either enriched or at natural abundance, in metabolomics applications. For LC-MS applications, we describe a technique called isotopic ratio outlier analysis (IROA), which utilizes samples that are isotopically labeled with 5% (test) and 95% (control) 13C. This labeling strategy leads to characteristic isotopic patterns that allow the differentiation of biological signals from artifacts and yield the exact number of carbons, significantly reducing possible molecular formulae. The relative abundance between the test and control samples for every IROA feature can be determined simply by integrating the peaks that arise from the 5 and 95% channels. For NMR applications, we describe two 13C-based approaches. For samples at natural abundance, we have developed a workflow to obtain 13C–13C and 13C–1H statistical correlations using 1D 13C and 1H NMR spectra. For samples that can be isotopically labeled, we describe another NMR approach to obtain direct 13C–13C spectroscopic correlations. These methods both provide extensive information about the carbon framework of compounds in the mixture for either database matching or de novo compound identification. We also discuss strategies in which 13C NMR can be used to identify unknown compounds from IROA experiments. By combining technologies with the same samples, we can identify important biomarkers and corresponding metabolites of interest.


Integrative and Comparative Biology | 2015

Metabolomics and Natural-Products Strategies to Study Chemical Ecology in Nematodes

Arthur S. Edison; Chaevien S. Clendinen; Ramadan Ajredini; Chris Beecher; Francesca V. Ponce; Gregory S. Stupp

This review provides an overview of two complementary approaches to identify biologically active compounds for studies in chemical ecology. The first is activity-guided fractionation and the second is metabolomics, particularly focusing on a new liquid chromatography–mass spectrometry-based method called isotopic ratio outlier analysis. To illustrate examples using these approaches, we review recent experiments using Caenorhabditis elegans and related free-living nematodes.


PLOS ONE | 2011

Ascaroside Expression in Caenorhabditis elegans Is Strongly Dependent on Diet and Developmental Stage

Fatma Kaplan; Jagan Srinivasan; Parag Mahanti; Ramadan Ajredini; Omer Durak; Rathika Nimalendran; Paul W. Sternberg; Peter E. A. Teal; Frank C. Schroeder; Arthur S. Edison; Hans T. Alborn

Collaboration


Dive into the Ramadan Ajredini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank C. Schroeder

Boyce Thompson Institute for Plant Research

View shared research outputs
Top Co-Authors

Avatar

Hans T. Alborn

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory S. Stupp

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Peter E. A. Teal

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul W. Sternberg

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge