Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fatma Kayaci is active.

Publication


Featured researches published by Fatma Kayaci.


Journal of Agricultural and Food Chemistry | 2013

Antibacterial Electrospun Poly(lactic acid) (PLA) Nanofibrous Webs Incorporating Triclosan/Cyclodextrin Inclusion Complexes

Fatma Kayaci; Ozgun C.O. Umu; Turgay Tekinay; Tamer Uyar

Solid triclosan/cyclodextrin inclusion complexes (TR/CD-IC) were obtained and then incorporated in poly(lactic acid) (PLA) nanofibers via electrospinning. α-CD, β-CD, and γ-CD were tested for the formation of TR/CD-IC by a coprecipitation method; however, the findings indicated that α-CD could not form an inclusion complex with TR, whereas β-CD and γ-CD successfully formed TR/CD-IC crystals, and the molar ratio of TR to CD was found to be 1:1. The structural and thermal characteristics of TR/CD-IC were investigated by (1)H NMR, FTIR, XRD, DSC, and TGA studies. Then, the encapsulation of TR/β-CD-IC and TR/γ-CD-IC in PLA nanofibers was achieved. Electrospun PLA and PLA/TR nanofibers obtained for comparison were uniform, whereas the aggregates of TR/CD-IC crystals were present and distributed within the PLA fiber matrix as confirmed by SEM and XRD analyses. The antibacterial activity of these nanofibrous webs was investigated. The results indicated that PLA nanofibers incorporating TR/CD-IC showed better antibacterial activity against Staphylococcus aureus and Escherichia coli bacteria compared to PLA nanofibers containing only TR without CD-IC. Electrospun nanofibrous webs incorporating TR/CD-IC may be applicable in active food packaging due to their very high surface area and nanoporous structure as well as efficient antibacterial property.


ACS Applied Materials & Interfaces | 2012

Polymer-inorganic core-shell nanofibers by electrospinning and atomic layer deposition: flexible nylon-ZnO core-shell nanofiber mats and their photocatalytic activity.

Fatma Kayaci; Cagla Ozgit-Akgun; Inci Donmez; Necmi Biyikli; Tamer Uyar

Polymer-inorganic core-shell nanofibers were produced by two-step approach; electrospinning and atomic layer deposition (ALD). First, nylon 6,6 (polymeric core) nanofibers were obtained by electrospinning, and then zinc oxide (ZnO) (inorganic shell) with precise thickness control was deposited onto electrospun nylon 6,6 nanofibers using ALD technique. The bead-free and uniform nylon 6,6 nanofibers having different average fiber diameters (∼80, ∼240 and ∼650 nm) were achieved by using two different solvent systems and polymer concentrations. ZnO layer about 90 nm, having uniform thickness around the fiber structure, was successfully deposited onto the nylon 6,6 nanofibers. Because of the low deposition temperature utilized (200 °C), ALD process did not deform the polymeric fiber structure, and highly conformal ZnO layer with precise thickness and composition over a large scale were accomplished regardless of the differences in fiber diameters. ZnO shell layer was found to have a polycrystalline nature with hexagonal wurtzite structure. The core-shell nylon 6,6-ZnO nanofiber mats were flexible because of the polymeric core component. Photocatalytic activity of the core-shell nylon 6,6-ZnO nanofiber mats were tested by following the photocatalytic decomposition of rhodamine-B dye. The nylon 6,6-ZnO nanofiber mat, having thinner fiber diameter, has shown better photocatalytic efficiency due to higher surface area of this sample. These nylon 6,6-ZnO nanofiber mats have also shown structural stability and kept their photocatalytic activity for the second cycle test. Our findings suggest that core-shell nylon 6,6-ZnO nanofiber mat can be a very good candidate as a filter material for water purification and organic waste treatment because of their photocatalytic properties along with structural flexibility and stability.


Journal of Agricultural and Food Chemistry | 2013

Enhanced Thermal Stability of Eugenol by Cyclodextrin Inclusion Complex Encapsulated in Electrospun Polymeric Nanofibers

Fatma Kayaci; Yelda Ertas; Tamer Uyar

Polyvinyl alcohol (PVA) nanofibers encapsulating eugenol (EG)/cyclodextrin (CD) inclusion complexes (IC) (EG/CD-IC) were produced via electrospinning technique in order to achieve high thermal stability and slow release of EG. In order to find out the most favorable CD type for the stabilization of EG, three types of native cyclodextrins (α-CD, β-CD, and γ-CD) were used for the formation of EG/CD-IC. In the case of PVA/EG/α-CD nanofibers, uncomplexed EG was detected indicating that α-CD is not a proper host for EG/CD-IC formation. However, for PVA/EG/β-CD-IC and PVA/EG/γ-CD-IC nanofibers, enhanced durability and high thermal stability for EG were achieved due to the inclusion complexation. The electrospun nanofibers encapsulating CD-IC of active compounds such as eugenol may be quite useful in the food industry due to the extremely large surface area of nanofibers along with specific functionality, enhanced thermal stability, and slow release of the active compounds by CD inclusion complexation.


Journal of Hazardous Materials | 2013

Surface modification of electrospun polyester nanofibers with cyclodextrin polymer for the removal of phenanthrene from aqueous solution.

Fatma Kayaci; Zeynep Aytac; Tamer Uyar

Surface modified electrospun polyester (PET) nanofibers with cyclodextrin polymer (CDP) were produced (PET/CDP). CDP formation onto electrospun PET nanofibers was achieved by polymerization between citric acid (CTR, crosslinking agent) and cyclodextrin (CD). Three different types of native CD (α-CD, β-CD and γ-CD) were used to form CDP. Water-insoluble crosslinked CDP coating was permanently adhered onto the PET nanofibers. SEM imaging indicated that the nanofibrous structure of PET mats was preserved after CDP surface modification process. PET/CDP nanofibers have shown rougher/irregular surface and larger fiber diameter when compared to untreated PET nanofibers. The surface analyses of PET/CDP nanofibers by XPS elucidated that CDP was present on the fiber surface. DMA analyses revealed the enhanced mechanical properties for PET/CDP where PET/CDP nanofibers have shown higher storage modulus and higher glass transition temperature compared to untreated PET nanofibers. The surface area of the PET/CDP nanofibers investigated by BET measurements showed slight decrease due to the presence of CDP coating compared to pristine PET nanofibers. Yet, it was observed that PET/CDP nanofibers were more efficient for the removal of phenanthrene as a model polycyclic aromatic hydrocarbon (PAH) from aqueous solution when compared to pristine PET nanofibers. Our findings suggested that PET/CDP nanofibers can be a very good candidate as a filter material for water purification and waste treatment owing to their very large surface area as well as inclusion complexation capability of surface associated CDP.


Carbohydrate Polymers | 2012

Electrospun zein nanofibers incorporating cyclodextrins.

Fatma Kayaci; Tamer Uyar

Zein nanofibers containing cyclodextrins (zein/CD) were produced via electrospinning. Three types of CDs (α-CD, β-CD and γ-CD) having 10%, 25% and 50% (w/w) were individually incorporated into zein nanofibers. SEM imaging elucidated that the morphologies of the electrospun zein/CD nanofibers depended on the CD type and weight percentage. The incorporation of CDs in zein improved the electrospinnability and bead-free nanofibers were obtained at lower zein concentrations. Zein/CD nanofibers having fiber diameters ∼100-400 nm were obtained depending on the zein concentrations, types and weight percentages of CD. XRD studies revealed that CDs were mostly distributed without forming crystalline aggregates for zein/CD nanofibers containing lower weight percentage of CDs. The surface analyses of zein/CD nanofibers by ATR-FTIR and XPS indicated that some of the CDs were present on the fiber surface. Thermal analyses showed that zein/β-CD nanofibers have shown higher glass transition temperatures and higher degradation temperature with increasing CD content.


Journal of Agricultural and Food Chemistry | 2011

Solid Inclusion Complexes of Vanillin with Cyclodextrins: Their Formation, Characterization, and High-Temperature Stability

Fatma Kayaci; Tamer Uyar

This study reports the formation of solid vanillin/cyclodextrin inclusion complexes (vanillin/CD ICs) with the aim to enhance the thermal stability and sustained release of vanillin by inclusion complexation. The solid vanillin/CD ICs with three types of CDs (α-CD, β-CD, and γ-CD) were prepared using the freeze-drying method; in addition, a coprecipitation method was also used in the case of γ-CD. The presence of vanillin in CD ICs was confirmed by FTIR and (1)H NMR studies. Moreover, (1)H NMR study elucidated that the complexation stoichiometry for both vanillin/β-CD IC and vanillin/γ-CD IC was a 1:1 molar ratio, whereas it was 0.625:1 for vanillin/α-CD IC. XRD studies have shown channel-type arrangement for CD molecules, and no diffraction peak for free vanillin was observed for vanillin/β-CD IC and vanillin/γ-CD IC, indicating that complete inclusion complexation was successfully achieved for these CD ICs. In the case of vanillin/α-CD IC, the sample was mostly amorphous and some uncomplexed vanillin was present, suggesting that α-CD was not very effective for complexation with vanillin compared to β-CD and γ-CD. Furthermore, DSC studies for vanillin/β-CD IC and vanillin/γ-CD IC have shown no melting point for vanillin, elucidating the true complex formation, whereas a melting point for vanillin was recorded for vanillin/α-CD IC, confirming the presence of some uncomplexed vanillin in this sample. TGA thermograms indicated that thermal evaporation/degradation of vanillin occurred over a much higher temperature range (150-300 °C) for vanillin/CD ICs samples when compared to pure vanillin (80-200 °C) or vanillin/CD physical mixtures, signifying that the thermal stability of vanillin was increased due to the inclusion complexation with CDs. Moreover, headspace GC-MS analyses indicated that the release of vanillin was sustained at higher temperatures in the case of vanillin/CD ICs due to the inclusion complexation when compared to vanillin/CD physical mixtures. The amount of vanillin released with increasing temperature was lowest for vanillin/γ-CD IC and highest for vanillin/α-CD IC, suggesting that the strength of interaction between vanillin and the CD cavity was in the order γ-CD > β-CD > α-CD for solid vanillin/CD ICs.


RSC Advances | 2013

Surface-decorated ZnO nanoparticles and ZnO nanocoating on electrospun polymeric nanofibers by atomic layer deposition for flexible photocatalytic nanofibrous membranes

Fatma Kayaci; Cagla Ozgit-Akgun; Necmi Biyikli; Tamer Uyar

Electrospun polymeric nanofibers were either surface-decorated with zinc oxide (ZnO) nanoparticles or coated with a continuous ZnO thin film with a precise thickness (∼27 nm) via atomic layer deposition (ALD) for the fabrication of flexible photocatalytic nanofibrous membranes.


ACS Applied Materials & Interfaces | 2014

Bioactive Surface Design Based on Functional Composite Electrospun Nanofibers for Biomolecule Immobilization and Biosensor Applications

Sema Demirci Uzun; Fatma Kayaci; Tamer Uyar; Suna Timur; Levent Toppare

The combination of nanomaterials and conducting polymers attracted remarkable attention for development of new immobilization matrices for enzymes. Hereby, an efficient surface design was investigated by modifying the graphite rod electrode surfaces with one-step electrospun nylon 6,6 nanofibers or 4% (w/w) multiwalled carbon nanotubes (MWCNTs) incorporating nylon 6,6 nanofibers (nylon 6,6/4MWCNT). High-resolution transmission electron microscopy study confirmed the successful incorporation of the MWCNTs into the nanofiber matrix for nylon 6,6/4MWCNT sample. Then, these nanofibrous surfaces were coated with a conducting polymer, (poly-4-(4,7-di(thiophen-2-yl)-1H-benzo[d]imidazol-2-yl)benzaldehyde) (PBIBA) to obtain a high electroactive surface area as new functional immobilization matrices. Due to the free aldehyde groups of the polymeric structures, a model enzyme, glucose oxidase was efficiently immobilized to the modified surfaces via covalent binding. Scanning electron microscope images confirmed that the nanofibrous structures were protected after the electrodeposition step of PBIBA and a high amount of protein attachment was successfully achieved by the help of high surface to volume ratio of electroactive nanofiber matrices. The biosensors were characterized in terms of their operational and storage stabilities and kinetic parameters (K(m)(app) and Imax). The resulting novel glucose biosensors revealed good stability and promising Imax values (10.03 and 16.67 μA for nylon 6,6/PBIBA and nylon 6,6/4MWCNT/PBIBA modified biosensors, respectively) and long shelf life (32 and 44 days for nylon 6,6/PBIBA and nylon 6,6/4MWCNT/PBIBA modified biosensors, respectively). Finally, the biosensor was tested on beverages for glucose detection.


APL Materials | 2014

Fabrication of AlN/BN bishell hollow nanofibers by electrospinning and atomic layer deposition

Ali Haider; Cagla Ozgit-Akgun; Fatma Kayaci; Ali K. Okyay; Tamer Uyar; Necmi Biyikli

Aluminum nitride (AlN)/boron nitride (BN) bishell hollow nanofibers (HNFs) have been fabricated by successive atomic layer deposition (ALD) of AlN and sequential chemical vapor deposition (CVD) of BN on electrospun polymeric nanofibrous template. A four-step fabrication process was utilized: (i) fabrication of polymeric (nylon 6,6) nanofibers via electrospinning, (ii) hollow cathode plasma-assisted ALD of AlN at 100 °C onto electrospun polymeric nanofibers, (iii) calcination at 500 °C for 2 h in order to remove the polymeric template, and (iv) sequential CVD growth of BN at 450 °C. AlN/BN HNFs have been characterized for their chemical composition, surface morphology, crystal structure, and internal nanostructure using X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, and selected area electron diffraction. Measurements confirmed the presence of crystalline hexagonal BN and AlN within the three dimensional (3D) network of bishell HNFs with relatively low impurity content. In contrast to the smooth surface of the inner AlN layer, outer BN coating showed a highly rough 3D morphology in the form of BN nano-needle crystallites. It is shown that the combination of electrospinning and plasma-assisted low-temperature ALD/CVD can produce highly controlled multi-layered bishell nitride ceramic hollow nanostructures. While electrospinning enables easy fabrication of nanofibrous template, self-limiting reactions of plasma-assisted ALD and sequential CVD provide control over the wall thicknesses of AlN and BN layers with sub-nanometer accuracy.


Journal of Materials Chemistry C | 2015

Fabrication of flexible polymer–GaN core–shell nanofibers by the combination of electrospinning and hollow cathode plasma-assisted atomic layer deposition

Cagla Ozgit-Akgun; Fatma Kayaci; Sesha Vempati; Ali Haider; Asli Celebioglu; Eda Goldenberg; Seda Kizir; Tamer Uyar; Necmi Biyikli

Here we demonstrate the combination of electrospinning and hollow cathode plasma-assisted atomic layer deposition (HCPA-ALD) processes by fabricating flexible polymer–GaN organic–inorganic core–shell nanofibers at a processing temperature much lower than that needed for the preparation of conventional GaN ceramic nanofibers. Polymer–GaN organic–inorganic core–shell nanofibers fabricated by the HCPA-ALD of GaN on electrospun polymeric (nylon 6,6) nanofibers at 200 °C were characterized in detail using electron microscopy, energy dispersive X-ray analysis, selected area electron diffraction, X-ray diffraction, X-ray photoelectron spectroscopy, photoluminescence measurements, and dynamic mechanical analysis. Although transmission electron microscopy studies indicated that the process parameters should be further optimized for obtaining ultimate uniformity and conformality on these high surface area 3D substrates, the HCPA-ALD process resulted in a ∼28 nm thick polycrystalline wurtzite GaN layer on polymeric nanofibers of an average fiber diameter of ∼70 nm. Having a flexible polymeric core and low processing temperature, these core–shell semiconducting nanofibers might have the potential to substitute brittle ceramic GaN nanofibers, which have already been shown to be high performance materials for various electronic and optoelectronic applications.

Collaboration


Dive into the Fatma Kayaci's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge