Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tamer Uyar is active.

Publication


Featured researches published by Tamer Uyar.


ACS Nano | 2010

Functional Electrospun Polystyrene Nanofibers Incorporating α-, β-, and γ-Cyclodextrins: Comparison of Molecular Filter Performance

Tamer Uyar; Rasmus Havelund; Jale Hacaloglu; Flemming Besenbacher; Peter Kingshott

Electrospinning has been used to successfully create polystyrene (PS) nanofibers containing either of three different types of cyclodextrin (CD); α-CD, β-CD, and γ-CD. These three CDs are chosen because they have different sized cavities that potentially allow for selective inclusion complex (IC) formation with molecules of different size or differences in affinity of IC formation with one type of molecule. The CD containing electrospun PS nanofibers (PS/CD) were initially characterized by scanning electron microscopy (SEM) to determine the uniformity of the fibers and their fiber diameter distributions. X-ray photoelectron spectroscopy (XPS) was used to quantitatively determine the concentration of each CD on the different fiber surfaces. Static time-of-flight secondary ion mass spectrometry (static-ToF-SIMS) showed the presence of each type of CD on the PS nanofibers by the detection of both the CD sodium adduct molecular ions (M + Na+) and lower molecular weight oxygen containing fragment ions. The comparative efficiency of the PS/CD nanofibers/nanoweb for removing phenolphthalein, a model organic compound, from solution was determined by UV-vis spectrometry, and the kinetics of phenolphthalein capture was shown to follow the trend PS/α-CD > PS/β-CD > PS/γ-CD. Direct pyrolysis mass spectrometry (DP-MS) was also performed to ascertain the relative binding strengths of the phenolphthalein for the CD cavities, and the results showed the trend in the interaction strength was β-CD > γ-CD > α-CD. Our results demonstrate that nanofibers produced by electrospinning that incorporate cyclodextrins with different sized cavities can indeed filter organic molecules and can potentially be used for filtration, purification, and/or separation processes.


Journal of Agricultural and Food Chemistry | 2013

Antibacterial Electrospun Poly(lactic acid) (PLA) Nanofibrous Webs Incorporating Triclosan/Cyclodextrin Inclusion Complexes

Fatma Kayaci; Ozgun C.O. Umu; Turgay Tekinay; Tamer Uyar

Solid triclosan/cyclodextrin inclusion complexes (TR/CD-IC) were obtained and then incorporated in poly(lactic acid) (PLA) nanofibers via electrospinning. α-CD, β-CD, and γ-CD were tested for the formation of TR/CD-IC by a coprecipitation method; however, the findings indicated that α-CD could not form an inclusion complex with TR, whereas β-CD and γ-CD successfully formed TR/CD-IC crystals, and the molar ratio of TR to CD was found to be 1:1. The structural and thermal characteristics of TR/CD-IC were investigated by (1)H NMR, FTIR, XRD, DSC, and TGA studies. Then, the encapsulation of TR/β-CD-IC and TR/γ-CD-IC in PLA nanofibers was achieved. Electrospun PLA and PLA/TR nanofibers obtained for comparison were uniform, whereas the aggregates of TR/CD-IC crystals were present and distributed within the PLA fiber matrix as confirmed by SEM and XRD analyses. The antibacterial activity of these nanofibrous webs was investigated. The results indicated that PLA nanofibers incorporating TR/CD-IC showed better antibacterial activity against Staphylococcus aureus and Escherichia coli bacteria compared to PLA nanofibers containing only TR without CD-IC. Electrospun nanofibrous webs incorporating TR/CD-IC may be applicable in active food packaging due to their very high surface area and nanoporous structure as well as efficient antibacterial property.


ACS Applied Materials & Interfaces | 2012

Polymer-inorganic core-shell nanofibers by electrospinning and atomic layer deposition: flexible nylon-ZnO core-shell nanofiber mats and their photocatalytic activity.

Fatma Kayaci; Cagla Ozgit-Akgun; Inci Donmez; Necmi Biyikli; Tamer Uyar

Polymer-inorganic core-shell nanofibers were produced by two-step approach; electrospinning and atomic layer deposition (ALD). First, nylon 6,6 (polymeric core) nanofibers were obtained by electrospinning, and then zinc oxide (ZnO) (inorganic shell) with precise thickness control was deposited onto electrospun nylon 6,6 nanofibers using ALD technique. The bead-free and uniform nylon 6,6 nanofibers having different average fiber diameters (∼80, ∼240 and ∼650 nm) were achieved by using two different solvent systems and polymer concentrations. ZnO layer about 90 nm, having uniform thickness around the fiber structure, was successfully deposited onto the nylon 6,6 nanofibers. Because of the low deposition temperature utilized (200 °C), ALD process did not deform the polymeric fiber structure, and highly conformal ZnO layer with precise thickness and composition over a large scale were accomplished regardless of the differences in fiber diameters. ZnO shell layer was found to have a polycrystalline nature with hexagonal wurtzite structure. The core-shell nylon 6,6-ZnO nanofiber mats were flexible because of the polymeric core component. Photocatalytic activity of the core-shell nylon 6,6-ZnO nanofiber mats were tested by following the photocatalytic decomposition of rhodamine-B dye. The nylon 6,6-ZnO nanofiber mat, having thinner fiber diameter, has shown better photocatalytic efficiency due to higher surface area of this sample. These nylon 6,6-ZnO nanofiber mats have also shown structural stability and kept their photocatalytic activity for the second cycle test. Our findings suggest that core-shell nylon 6,6-ZnO nanofiber mat can be a very good candidate as a filter material for water purification and organic waste treatment because of their photocatalytic properties along with structural flexibility and stability.


Langmuir | 2011

Electrospinning of Polymer-free Nanofibers from Cyclodextrin Inclusion Complexes

Asli Celebioglu; Tamer Uyar

The electrospinning of polymer-free nanofibers from highly concentrated (160%, w/v) aqueous solutions of hydroxypropyl-β-cyclodextrin (HPβCD) and its inclusion complexes with triclosan (HPβCD/triclosan-IC) was achieved successfully. The dynamic light scattering (DLS) and rheology measurements indicated that the presence of considerable HPβCD aggregates and the high solution viscosity were the key factors in obtaining electrospun HPβCD and HPβCD/triclosan-IC nanofibers without the use of any polymeric carrier. The HPβCD and HPβCD/triclosan-IC solutions containing 20% (w/w) urea yielded no fibers but only beads and splashes because of the depression of the self-aggregation of the HPβCD. The inclusion complexation of triclosan with HPβCD was studied by isothermal titration calorimetry (ITC) and turbidity measurements. The characteristics of the HPβCD and HPβCD/triclosan-IC nanofibers were investigated by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). It was found that the electrospinning of HPβCD/triclosan-IC solution having a 1:1 molar ratio was optimal for obtaining nanofibers without any uncomplexed guest molecules.


Journal of Agricultural and Food Chemistry | 2013

Enhanced Thermal Stability of Eugenol by Cyclodextrin Inclusion Complex Encapsulated in Electrospun Polymeric Nanofibers

Fatma Kayaci; Yelda Ertas; Tamer Uyar

Polyvinyl alcohol (PVA) nanofibers encapsulating eugenol (EG)/cyclodextrin (CD) inclusion complexes (IC) (EG/CD-IC) were produced via electrospinning technique in order to achieve high thermal stability and slow release of EG. In order to find out the most favorable CD type for the stabilization of EG, three types of native cyclodextrins (α-CD, β-CD, and γ-CD) were used for the formation of EG/CD-IC. In the case of PVA/EG/α-CD nanofibers, uncomplexed EG was detected indicating that α-CD is not a proper host for EG/CD-IC formation. However, for PVA/EG/β-CD-IC and PVA/EG/γ-CD-IC nanofibers, enhanced durability and high thermal stability for EG were achieved due to the inclusion complexation. The electrospun nanofibers encapsulating CD-IC of active compounds such as eugenol may be quite useful in the food industry due to the extremely large surface area of nanofibers along with specific functionality, enhanced thermal stability, and slow release of the active compounds by CD inclusion complexation.


Colloids and Surfaces B: Biointerfaces | 2014

Drug delivery system based on cyclodextrin-naproxen inclusion complex incorporated in electrospun polycaprolactone nanofibers

M. Fatih Canbolat; Asli Celebioglu; Tamer Uyar

In this study, we select naproxen (NAP) as a reference drug and electrospun poly (ɛ-caprolactone) (PCL) nanofibers as a fibrous matrix for our drug-delivery system. NAP was complexed with beta-cyclodextrin (βCD) to form inclusion complex (NAP-βCD-IC) and then NAP-βCD-IC was incorporated into PCL nanofibers via electrospinning. The incorporation of NAP without CD-IC into electrospun PCL was also carried out for a comparative study. Our aim is to analyze the release profiles of NAP from PCL/NAP and PCL/NAP-βCD-IC nanofibers and we investigate the effect of CD-IC on the release behavior of NAP from the nanofibrous PCL matrix. The characterization of NAP-βCD-IC and the presence of CD-IC in PCL/NAP-βCD-IC nanofibers were studied by FTIR, XRD, TGA, NMR and SEM. The SEM imaging of the electrospun PCL/NAP and PCL/NAP-βCD-IC nanofibers reveal that the average fiber diameter of these nanofibers is around 300nm, in addition, the aggregates of CD-IC in PCL/NAP-βCD-IC nanofibers is observed. The release study of NAP in buffer solution elucidate that the PCL/NAP-βCD-IC nanofibers have higher release amount of NAP than the PCL/NAP nanofibers due to the solubility enhancement of NAP by CD-IC.


Journal of Hazardous Materials | 2013

Surface modification of electrospun polyester nanofibers with cyclodextrin polymer for the removal of phenanthrene from aqueous solution.

Fatma Kayaci; Zeynep Aytac; Tamer Uyar

Surface modified electrospun polyester (PET) nanofibers with cyclodextrin polymer (CDP) were produced (PET/CDP). CDP formation onto electrospun PET nanofibers was achieved by polymerization between citric acid (CTR, crosslinking agent) and cyclodextrin (CD). Three different types of native CD (α-CD, β-CD and γ-CD) were used to form CDP. Water-insoluble crosslinked CDP coating was permanently adhered onto the PET nanofibers. SEM imaging indicated that the nanofibrous structure of PET mats was preserved after CDP surface modification process. PET/CDP nanofibers have shown rougher/irregular surface and larger fiber diameter when compared to untreated PET nanofibers. The surface analyses of PET/CDP nanofibers by XPS elucidated that CDP was present on the fiber surface. DMA analyses revealed the enhanced mechanical properties for PET/CDP where PET/CDP nanofibers have shown higher storage modulus and higher glass transition temperature compared to untreated PET nanofibers. The surface area of the PET/CDP nanofibers investigated by BET measurements showed slight decrease due to the presence of CDP coating compared to pristine PET nanofibers. Yet, it was observed that PET/CDP nanofibers were more efficient for the removal of phenanthrene as a model polycyclic aromatic hydrocarbon (PAH) from aqueous solution when compared to pristine PET nanofibers. Our findings suggested that PET/CDP nanofibers can be a very good candidate as a filter material for water purification and waste treatment owing to their very large surface area as well as inclusion complexation capability of surface associated CDP.


Colloids and Surfaces B: Biointerfaces | 2014

Antibacterial electrospun nanofibers from triclosan/cyclodextrin inclusion complexes.

Asli Celebioglu; Ozgun C.O. Umu; Turgay Tekinay; Tamer Uyar

The electrospinning of nanofibers (NF) from cyclodextrin inclusion complexes (CD-IC) with an antibacterial agent (triclosan) was achieved without using any carrier polymeric matrix. Polymer-free triclosan/CD-IC NF were electrospun from highly concentrated (160% CD, w/w) aqueous triclosan/CD-IC suspension by using two types of chemically modified CD; hydroxypropyl-beta-cyclodextrin (HPβCD) and hydroxypropyl-gamma-cyclodextrin (HPγCD). The morphological characterization of the electrospun triclosan/CD-IC NF by SEM elucidated that the triclosan/HPβCD-IC NF and triclosan/HPγCD-IC NF were bead-free having average fiber diameter of 520 ± 250 nm and 1,100 ± 660 nm, respectively. The presence of triclosan and the formation of triclosan/CD-IC within the fiber structure were confirmed by (1)H-NMR, FTIR, XRD, DSC, and TGA studies. The initial 1:1 molar ratio of the triclosan:CD was kept for triclosan/HPβCD-IC NF after the electrospinning and whereas 0.7:1 molar ratio was observed for triclosan/HPγCD-IC NF and some uncomplexed triclosan was detected suggesting that the complexation efficiency of triclosan with HPγCD was lower than that of HPβCD. The antibacterial properties of triclosan/CD-IC NF were tested against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. It was observed that triclosan/HPβCD-IC NF and triclosan/HPγCD-IC NF showed better antibacterial activity against both bacteria compared to uncomplexed pure triclosan.


Carbohydrate Polymers | 2012

Electrospun zein nanofibers incorporating cyclodextrins.

Fatma Kayaci; Tamer Uyar

Zein nanofibers containing cyclodextrins (zein/CD) were produced via electrospinning. Three types of CDs (α-CD, β-CD and γ-CD) having 10%, 25% and 50% (w/w) were individually incorporated into zein nanofibers. SEM imaging elucidated that the morphologies of the electrospun zein/CD nanofibers depended on the CD type and weight percentage. The incorporation of CDs in zein improved the electrospinnability and bead-free nanofibers were obtained at lower zein concentrations. Zein/CD nanofibers having fiber diameters ∼100-400 nm were obtained depending on the zein concentrations, types and weight percentages of CD. XRD studies revealed that CDs were mostly distributed without forming crystalline aggregates for zein/CD nanofibers containing lower weight percentage of CDs. The surface analyses of zein/CD nanofibers by ATR-FTIR and XPS indicated that some of the CDs were present on the fiber surface. Thermal analyses showed that zein/β-CD nanofibers have shown higher glass transition temperatures and higher degradation temperature with increasing CD content.


Nanotechnology | 2009

Electrospinning of functional poly(methyl methacrylate) nanofibers containing cyclodextrin-menthol inclusion complexes

Tamer Uyar; Yusuf Nur; Jale Hacaloglu; Flemming Besenbacher

Electrospinning of nanofibers with cyclodextrin inclusion complexes (CD-ICs) is particularly attractive since distinct properties can be obtained by combining the nanofibers with specific functions of the CD-ICs. Here we report on the electrospinning of poly(methyl methacrylate) (PMMA) nanofibers containing cyclodextrin-menthol inclusion complexes (CD-menthol-ICs). These CD-menthol-IC functionalized nanofibers were developed with the purpose of producing functional nanofibers that contain fragrances/flavors with high temperature stability, and menthol was used as a model fragrance/flavor material. The PMMA nanofibers were electrospun with CD-menthol-ICs using three type of CD: alpha-CD, beta-CD, and gamma-CD. Direct pyrolysis mass spectrometry (DP-MS) studies showed that the thermal evaporation of menthol occurred over a very high and a broad temperature range (100-355 degrees C) for PMMA/CDmenthol-IC nanowebs, demonstrating the complexation of menthol with the CD cavity and its high temperature stability. Furthermore, as the size of CD cavity increased in the order alpha-CD<beta-CD<gamma-CD, the thermal evolution of menthol shifted to higher temperatures, suggesting that the strength of interaction between menthol and the CD cavity is in the order gamma-CD>beta-CD>alpha-CD.

Collaboration


Dive into the Tamer Uyar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jale Hacaloglu

Middle East Technical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan E. Tonelli

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge