Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephanie C. Eisenbarth is active.

Publication


Featured researches published by Stephanie C. Eisenbarth.


Nature | 2012

Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity

Jorge Henao-Mejia; Eran Elinav; Cheng Cheng Jin; Liming Hao; Wajahat Z. Mehal; Till Strowig; Christoph A. Thaiss; Andrew L. Kau; Stephanie C. Eisenbarth; Michael J. Jurczak; Joao Paulo Camporez; Gerald I. Shulman; Jeffrey I. Gordon; Hal M. Hoffman; Richard A. Flavell

Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome and the leading cause of chronic liver disease in the Western world. Twenty per cent of NAFLD individuals develop chronic hepatic inflammation (non-alcoholic steatohepatitis, NASH) associated with cirrhosis, portal hypertension and hepatocellular carcinoma, yet the causes of progression from NAFLD to NASH remain obscure. Here, we show that the NLRP6 and NLRP3 inflammasomes and the effector protein IL-18 negatively regulate NAFLD/NASH progression, as well as multiple aspects of metabolic syndrome via modulation of the gut microbiota. Different mouse models reveal that inflammasome-deficiency-associated changes in the configuration of the gut microbiota are associated with exacerbated hepatic steatosis and inflammation through influx of TLR4 and TLR9 agonists into the portal circulation, leading to enhanced hepatic tumour-necrosis factor (TNF)-α expression that drives NASH progression. Furthermore, co-housing of inflammasome-deficient mice with wild-type mice results in exacerbation of hepatic steatosis and obesity. Thus, altered interactions between the gut microbiota and the host, produced by defective NLRP3 and NLRP6 inflammasome sensing, may govern the rate of progression of multiple metabolic syndrome-associated abnormalities, highlighting the central role of the microbiota in the pathogenesis of heretofore seemingly unrelated systemic auto-inflammatory and metabolic disorders.


Nature | 2008

Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants

Stephanie C. Eisenbarth; Oscar R. Colegio; William O’Connor; Fayyaz S. Sutterwala; Richard A. Flavell

Aluminium adjuvants, typically referred to as ‘alum’, are the most commonly used adjuvants in human and animal vaccines worldwide, yet the mechanism underlying the stimulation of the immune system by alum remains unknown. Toll-like receptors are critical in sensing infections and are therefore common targets of various adjuvants used in immunological studies. Although alum is known to induce the production of proinflammatory cytokines in vitro, it has been repeatedly demonstrated that alum does not require intact Toll-like receptor signalling to activate the immune system. Here we show that aluminium adjuvants activate an intracellular innate immune response system called the Nalp3 (also known as cryopyrin, CIAS1 or NLRP3) inflammasome. Production of the pro-inflammatory cytokines interleukin-1β and interleukin-18 by macrophages in response to alum in vitro required intact inflammasome signalling. Furthermore, in vivo, mice deficient in Nalp3, ASC (apoptosis-associated speck-like protein containing a caspase recruitment domain) or caspase-1 failed to mount a significant antibody response to an antigen administered with aluminium adjuvants, whereas the response to complete Freund’s adjuvant remained intact. We identify the Nalp3 inflammasome as a crucial element in the adjuvant effect of aluminium adjuvants; in addition, we show that the innate inflammasome pathway can direct a humoral adaptive immune response. This is likely to affect how we design effective, but safe, adjuvants in the future.


Cell | 2011

NLRP6 Inflammasome Regulates Colonic Microbial Ecology and Risk for Colitis

Eran Elinav; Till Strowig; Andrew L. Kau; Jorge Henao-Mejia; Christoph A. Thaiss; Carmen J. Booth; David R. Peaper; John Bertin; Stephanie C. Eisenbarth; Jeffrey I. Gordon; Richard A. Flavell

Inflammasomes are multiprotein complexes that function as sensors of endogenous or exogenous damage-associated molecular patterns. Here, we show that deficiency of NLRP6 in mouse colonic epithelial cells results in reduced IL-18 levels and altered fecal microbiota characterized by expanded representation of the bacterial phyla Bacteroidetes (Prevotellaceae) and TM7. NLRP6 inflammasome-deficient mice were characterized by spontaneous intestinal hyperplasia, inflammatory cell recruitment, and exacerbation of chemical colitis induced by exposure to dextran sodium sulfate (DSS). Cross-fostering and cohousing experiments revealed that the colitogenic activity of this microbiota is transferable to neonatal or adult wild-type mice, leading to exacerbation of DSS colitis via induction of the cytokine, CCL5. Antibiotic treatment and electron microscopy studies further supported the role of Prevotellaceae as a key representative of this microbiota-associated phenotype. Altogether, perturbations in this inflammasome pathway, including NLRP6, ASC, caspase-1, and IL-18, may constitute a predisposing or initiating event in some cases of human IBD.


Journal of Experimental Medicine | 2002

Lipopolysaccharide-enhanced, Toll-like Receptor 4–dependent T Helper Cell Type 2 Responses to Inhaled Antigen

Stephanie C. Eisenbarth; Damani A. Piggott; James W. Huleatt; Irene Visintin; Christina A. Herrick; Kim Bottomly

Allergic asthma is an inflammatory lung disease initiated and directed by T helper cells type 2 (Th2). The mechanism involved in generation of Th2 responses to inert inhaled antigens, however, is unknown. Epidemiological evidence suggests that exposure to lipopolysaccharide (LPS) or other microbial products can influence the development and severity of asthma. However, the mechanism by which LPS influences asthma pathogenesis remains undefined. Although it is known that signaling through Toll-like receptors (TLR) is required for adaptive T helper cell type 1 (Th1) responses, it is unclear if TLRs are needed for Th2 priming. Here, we report that low level inhaled LPS signaling through TLR4 is necessary to induce Th2 responses to inhaled antigens in a mouse model of allergic sensitization. The mechanism by which LPS signaling results in Th2 sensitization involves the activation of antigen-containing dendritic cells. In contrast to low levels, inhalation of high levels of LPS with antigen results in Th1 responses. These studies suggest that the level of LPS exposure can determine the type of inflammatory response generated and provide a potential mechanistic explanation of epidemiological data on endotoxin exposure and asthma prevalence.


Proceedings of the National Academy of Sciences of the United States of America | 2008

The Nalp3 inflammasome is essential for the development of silicosis

Suzanne L. Cassel; Stephanie C. Eisenbarth; Shankar S. Iyer; Jeffrey J. Sadler; Oscar R. Colegio; Linda A. Tephly; A. Brent Carter; Paul B. Rothman; Richard A. Flavell; Fayyaz S. Sutterwala

Inhalation of crystalline silica and asbestos is known to cause the progressive pulmonary fibrotic disorders silicosis and asbestosis, respectively. Although alveolar macrophages are believed to initiate these inflammatory responses, the mechanism by which this occurs has been unclear. Here we show that the inflammatory response and subsequent development of pulmonary fibrosis after inhalation of silica is dependent on the Nalp3 inflammasome. Stimulation of macrophages with silica results in the activation of caspase-1 in a Nalp3-dependent manner. Macrophages deficient in components of the Nalp3 inflammasome were incapable of secreting the proinflammatory cytokines interleukin (IL)-1β and IL-18 in response to silica. Similarly, asbestos was capable of activating caspase-1 in a Nalp3-dependent manner. Activation of the Nalp3 inflammasome by silica required both an efflux of intracellular potassium and the generation of reactive oxygen species. This study demonstrates a key role for the Nalp3 inflammasome in the pathogenesis of pneumoconiosis.


Nature | 2014

Functional polarization of tumour-associated macrophages by tumour-derived lactic acid

Oscar R. Colegio; Ngoc Quynh Chu; Alison L. Szabo; Thach Chu; Anne Marie Rhebergen; Vikram Jairam; Nika Cyrus; Carolyn E. Brokowski; Stephanie C. Eisenbarth; Gillian M. Phillips; Gary W. Cline; Andrew J. Phillips; Ruslan Medzhitov

Macrophages have an important role in the maintenance of tissue homeostasis. To perform this function, macrophages must have the capacity to monitor the functional states of their ‘client cells’: namely, the parenchymal cells in the various tissues in which macrophages reside. Tumours exhibit many features of abnormally developed organs, including tissue architecture and cellular composition. Similarly to macrophages in normal tissues and organs, macrophages in tumours (tumour-associated macrophages) perform some key homeostatic functions that allow tumour maintenance and growth. However, the signals involved in communication between tumours and macrophages are poorly defined. Here we show that lactic acid produced by tumour cells, as a by-product of aerobic or anaerobic glycolysis, has a critical function in signalling, through inducing the expression of vascular endothelial growth factor and the M2-like polarization of tumour-associated macrophages. Furthermore, we demonstrate that this effect of lactic acid is mediated by hypoxia-inducible factor 1α (HIF1α). Finally, we show that the lactate-induced expression of arginase 1 by macrophages has an important role in tumour growth. Collectively, these findings identify a mechanism of communication between macrophages and their client cells, including tumour cells. This communication most probably evolved to promote homeostasis in normal tissues but can also be engaged in tumours to promote their growth.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome.

Shankar S. Iyer; Wilco P. Pulskens; Jeffrey J. Sadler; Loes M. Butter; Gwendoline J. D. Teske; Tyler K. Ulland; Stephanie C. Eisenbarth; Sandrine Florquin; Richard A. Flavell; Jaklien C. Leemans; Fayyaz S. Sutterwala

Dying cells are capable of activating the innate immune system and inducing a sterile inflammatory response. Here, we show that necrotic cells are sensed by the Nlrp3 inflammasome resulting in the subsequent release of the proinflammatory cytokine IL-1β. Necrotic cells produced by pressure disruption, hypoxic injury, or complement-mediated damage were capable of activating the Nlrp3 inflammasome. Nlrp3 inflammasome activation was triggered in part through ATP produced by mitochondria released from damaged cells. Neutrophilic influx into the peritoneum in response to necrotic cells in vivo was also markedly diminished in the absence of Nlrp3. Nlrp3-deficiency moreover protected animals against mortality, renal dysfunction, and neutrophil influx in an in vivo renal ischemic acute tubular necrosis model. These findings suggest that the inhibition of Nlrp3 inflammasome activity can diminish the acute inflammation and damage associated with tissue injury.


Journal of Clinical Investigation | 2005

MyD88-dependent induction of allergic Th2 responses to intranasal antigen

Damani A. Piggott; Stephanie C. Eisenbarth; Lan Xu; Stephanie L. Constant; James W. Huleatt; Christina A. Herrick; Kim Bottomly

MyD88 is a common Toll-like receptor (TLR) adaptor molecule found to be essential for induction of adaptive Th1 immunity. Conversely, innate control of adaptive Th2 immunity has been shown to occur in a MyD88-independent manner. In this study, we show that MyD88 is an essential innate component in the induction of TLR4-dependent Th2 responses to intranasal antigen; thus we demonstrate what we believe to be a novel role for MyD88 in pulmonary Th2 immunity. Induction of the MyD88-independent type I IFN response to LPS is defective in the pulmonary environment. Moreover, in the absence of MyD88, LPS-induced upregulation of costimulatory molecule expression on pulmonary DCs is defective, in contrast to what has been observed with bone marrow-derived DCs (BMDCs). Reconstitution of Th2 responses occurs upon adoptive pulmonary transfer of activated BMDCs to MyD88-deficient recipients. Furthermore, the dependence of Th2 responses on MyD88 is governed by the initial route of antigen exposure; this demonstrates what we believe are novel site-specific innate mechanisms for control of adaptive Th2 immunity.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4

Bo Hu; Eran Elinav; Samuel Huber; Carmen J. Booth; Till Strowig; Chengcheng Jin; Stephanie C. Eisenbarth; Richard A. Flavell

Chronic inflammation is a known risk factor for tumorigenesis, yet the precise mechanism of this association is currently unknown. The inflammasome, a multiprotein complex formed by NOD-like receptor (NLR) family members, has recently been shown to orchestrate multiple innate and adaptive immune responses, yet its potential role in inflammation-induced cancer has been little studied. Using the azoxymethane and dextran sodium sulfate colitis-associated colorectal cancer model, we show that caspase-1–deficient (Casp1−/−) mice have enhanced tumor formation. Surprisingly, the role of caspase-1 in tumorigenesis was not through regulation of colonic inflammation, but rather through regulation of colonic epithelial cell proliferation and apoptosis. Consequently, caspase-1–deficient mice demonstrate increased colonic epithelial cell proliferation in early stages of injury-induced tumor formation and reduced apoptosis in advanced tumors. We suggest a model in which the NLRC4 inflammasome is central to colonic inflammation-induced tumor formation through regulation of epithelial cell response to injury.


Cell Host & Microbe | 2009

Humanized mice for modeling human infectious disease: challenges, progress, and outlook.

Nicolas Legrand; Alexander Ploss; Rudi Balling; Pablo D. Becker; Chiara Borsotti; Nicolas Brezillon; Jennifer Debarry; Ype P. de Jong; Hongkui Deng; James P. Di Santo; Stephanie C. Eisenbarth; Elizabeth E. Eynon; Richard A. Flavell; Carlos A. Guzmán; Nicholas D. Huntington; Dina Kremsdorf; Michael P. Manns; Markus G. Manz; Jean-Jacques Mention; Michael Ott; Chozhavendan Rathinam; Charles M. Rice; Anthony Rongvaux; Sean Stevens; Hergen Spits; Helene Strick-Marchand; Hitoshi Takizawa; Anja U. van Lent; Chengyan Wang; Kees Weijer

Over 800 million people worldwide are infected with hepatitis viruses, human immunodeficiency virus (HIV), and malaria, resulting in more than 5 million deaths annually. Here we discuss the potential and challenges of humanized mouse models for developing effective and affordable therapies and vaccines, which are desperately needed to combat these diseases.

Collaboration


Dive into the Stephanie C. Eisenbarth's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jorge Henao-Mejia

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge