Federica Pisati
University of Milan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Federica Pisati.
Journal of Clinical Investigation | 2004
Yvan Torrente; Marzia Belicchi; Maurilio Sampaolesi; Federica Pisati; Mirella Meregalli; Giuseppe D’Antona; Rossana Tonlorenzi; Laura Porretti; Manuela Gavina; Kamel Mamchaoui; Denis Furling; Vincent Mouly; Gillian Butler-Browne; Roberto Bottinelli; Giulio Cossu; Nereo Bresolin
Duchenne muscular dystrophy (DMD) is a common X-linked disease characterized by widespread muscle damage that invariably leads to paralysis and death. There is currently no therapy for this disease. Here we report that a subpopulation of circulating cells expressing AC133, a well-characterized marker of hematopoietic stem cells, also expresses early myogenic markers. Freshly isolated, circulating AC133(+) cells were induced to undergo myogenesis when cocultured with myogenic cells or exposed to Wnt-producing cells in vitro and when delivered in vivo through the arterial circulation or directly into the muscles of transgenic scid/mdx mice (which allow survival of human cells). Injected cells also localized under the basal lamina of host muscle fibers and expressed satellite cell markers such as M-cadherin and MYF5. Furthermore, functional tests of injected muscles revealed a substantial recovery of force after treatment. As these cells can be isolated from the blood, manipulated in vitro, and delivered through the circulation, they represent a possible tool for future cell therapy applications in DMD disease or other muscular dystrophies.
Cell Transplantation | 2007
Yvan Torrente; Marzia Belicchi; C. Marchesi; Giuseppe D'Antona; Filippo Cogiamanian; Federica Pisati; Manuela Gavina; Giordano R; Rossana Tonlorenzi; Gigliola Fagiolari; Costanza Lamperti; Porretti L; Lopa R; Maurilio Sampaolesi; Vicentini L; N. Grimoldi; Tiberio F; Songa; Baratta P; Alessandro Prelle; Forzenigo L; Michela Guglieri; Orietta Pansarasa; Chiara Rinaldi; Mouly; Gillian Butler-Browne; Giacomo P. Comi; Biondetti P; Maurizio Moggio; S.M. Gaini
Duchenne muscular dystrophy (DMD) is a lethal X-linked recessive muscle disease due to defect on the gene encoding dystrophin. The lack of a functional dystrophin in muscles results in the fragility of the muscle fiber membrane with progressive muscle weakness and premature death. There is no cure for DMD and current treatment options focus primarily on respiratory assistance, comfort care, and delaying the loss of ambulation. Recent works support the idea that stem cells can contribute to muscle repair as well as to replenishment of the satellite cell pool. Here we tested the safety of autologous transplantation of muscle-derived CD133+ cells in eight boys with Duchenne muscular dystrophy in a 7-month, double-blind phase I clinical trial. Stem cell safety was tested by measuring muscle strength and evaluating muscle structures with MRI and histological analysis. Timed cardiac and pulmonary function tests were secondary outcome measures. No local or systemic side effects were observed in all treated DMD patients. Treated patients had an increased ratio of capillary per muscle fibers with a switch from slow to fast myosin-positive myofibers.
Journal of Neuroscience Research | 2004
Marzia Belicchi; Federica Pisati; Raffaella Lopa; Laura Porretti; Francesco Fortunato; Manuela Sironi; Mario Scalamogna; Eugenio Parati; Nereo Bresolin; Yvan Torrente
Recent evidence indicates that neural stem cell properties can be found among a mammalian skin‐derived multipotent population. A major barrier in the further characterization of the human skin‐derived neural progenitors is the inability to isolate this population based on expression of cell surface markers. Our work has been devoted to purified human skin‐derived stem cells that are capable of neural differentiation, based on the presence or absence of the AC133 cell surface marker. The enriched skin‐derived AC133+ cells express the CD34 and Thy‐1 antigens. These cells cultured in a growth medium containing epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) proliferate, forming spheres, and differentiate in vitro into neurons, astrocytes, and rarely into oligodendrocytes. Single cells from sphere cultures initiated from human purified AC133+ cells were replated as single cells and were able to generate new spheres, demonstrating the self‐renewing ability of these stem cell populations. Brain engraftment of cells obtained from human purified AC133+‐derived spheres generated different neural phenotypes: immature neurons and a most abundant population of well differentiated astrocytes. The AC133‐derived astrocytes assumed perivascular locations in the frontal cortex. No donor‐derived oligodendrocytes were found in the transplanted mouse brains. Several donor small, rounded cells that expressed endothelial markers were found close to the host vessel and near the subventricular zone. Thus, mammalian skin AC133‐derived cells behave as a multipotent population with the capacity to differentiate into neural lineages in vitro and, prevalently, endothelium and astrocytes in vivo, demonstrating the great plasticity of these cells and suggesting potential clinical application.
Neuropathology and Applied Neurobiology | 2011
Francesca Orzan; Serena Pellegatta; Pietro Luigi Poliani; Federica Pisati; V. Caldera; F. Menghi; Dimos Kapetis; C. Marras; D. Schiffer; Gaetano Finocchiaro
F. Orzan, S. Pellegatta, P. L. Poliani, F. Pisati, V. Caldera, F. Menghi, D. Kapetis, C. Marras, D. Schiffer and G. Finocchiaro (2011) Neuropathology and Applied Neurobiology37, 381–394 Enhancer of Zeste 2 (EZH2) is up‐regulated in malignant gliomas and in glioma stem‐like cells
Cell Transplantation | 2007
Federica Pisati; Patrizia Bossolasco; Mirella Meregalli; Lidia Cova; Marzia Belicchi; Manuela Gavina; C. Marchesi; Cinzia Calzarossa; Davide Soligo; Giorgio Lambertenghi-Deliliers; Nereo Bresolin; Vincenzo Silani; Yvan Torrente; Elio Polli
In animal models of neurological disorders for cerebral ischemia, Parkinsons disease, and spinal cord lesions, transplantation of mesenchymal stem cells (MSCs) has been reported to improve functional outcome. Three mechanisms have been suggested for the effects of the MSCs: transdifferentiation of the grafted cells with replacement of degenerating neural cells, cell fusion, and neuroprotection of the dying cells. Here we demonstrate that a restricted number of cells with differentiated astroglial features can be obtained from human adult MSCs (hMSCs) both in vitro using different induction protocols and in vivo after transplantation into the developing mouse brain. We then examined the in vitro differentiation capacity of the hMSCs in coculture with slices of neonatal brain cortex. In this condition the hMSCs did not show any neuronal transdifferentiation but expressed neurotrophin low-affinity (NGFRp75) and high-affinity (trkC) receptors and released nerve growth factor (NGF) and neurotrophin-3 (NT-3). The same neurotrophins expression was demonstrated 45 days after the intracerebral transplantation of hMSCs into nude mice with surviving astroglial cells. These data further confirm the limited capability of adult hMSC to differentiate into neurons whereas they differentiated in astroglial cells. Moreover, the secretion of neurotrophic factors combined with activation of the specific receptors of transplanted hMSCs demonstrated an alternative mechanism for neuroprotection of degenerating neurons. hMSCs are further defined in their transplantation potential for treating neurological disorders.
Cell Transplantation | 2003
Yvan Torrente; El Fahime E; Nicolas Caron; Del Bo R; Marzia Belicchi; Federica Pisati; Jacques P. Tremblay; Nereo Bresolin
Migration of transplanted myogenic cells occurs during both embryogenesis and regeneration of skeletal muscles and is important for successful myoblast transplantation, but little is known about factors that promote chemotaxis of these cells. Tumor necrosis factor-α (TNF-α) is known to induce chemotactic effect on several cell types. In this study, we investigated its influence on the in vitro and in vivo motility of C2C12 and primary myoblasts. In the in vitro test performed in the blind-well Boyden chambers, we showed that TNF-α (50–400 U/ml) significantly enhanced the ability of myogenic cells to migrate. The dose–response curve for this factor was bell shaped, with maximum activity in the 200 U/ml range. In the in vivo test, intramuscular administration of TNF-α was performed by an Alzet pump connected to a perforated polyethylene microtube inserted in the tibialis anterior (TA) of CD1 mice. In these experiments, myoblasts were injected under the muscle epimysium. The recipient mice were immunosuppressed with FK506. Our results showed that, 5 days after myoblast transplantation, cells migrated further in the muscles infused with TNF-α than in the muscles not exposed to TNF-α. TNF-α not only has a chemotactic activity but may also modify cell migration via its action on matrix metalloproteinase (MMP) expression. The proteolytic activities of the MMPs secreted in the muscles were thus also assessed by gelatin zymography. The results showed an increased of MMP-2 and MMP-9 transcripts in the TNF-α-infused muscles injected with myogenic cells. Myoblast migration during transplantation may be enhanced by overlapping gradients of several effector molecules such as TNF-α, interferon-γ (INF-γ), and interleukins, released at the site of muscle injury. We propose that TNF-α may promote myoblast migration directly through chemotactic activity and indirectly by enhancing MMP activity at the site of muscle injury.
Journal of Cell Biology | 2003
Yvan Torrente; Geoffrey Camirand; Federica Pisati; Marzia Belicchi; Barbara Rossi; Fabio Colombo; Mosthapha El Fahime; Nicolas Caron; Andrew C. Issekutz; Gabriela Constantin; Jacques P. Tremblay; Nereo Bresolin
Attempts to repair muscle damage in Duchenne muscular dystrophy (DMD) by transplanting skeletal myoblasts directly into muscles are faced with the problem of the limited migration of these cells in the muscles. The delivery of myogenic stem cells to the sites of muscle lesions via the systemic circulation is a potential alternative approach to treat this disease. Muscle-derived stem cells (MDSCs) were obtained by a MACS® multisort method. Clones of MDSCs, which were Sca-1+/CD34−/L-selectin+, were found to adhere firmly to the endothelium of mdx dystrophic muscles after i.v. or i.m. injections. The subpopulation of Sca-1+/CD34− MDSCs expressing L-selectin was called homing MDSCs (HMDSCs). Treatment of HMDSCs with antibodies against L-selectin prevented adhesion to the muscle endothelium. Importantly, we found that vascular endothelium from striate muscle of young mdx mice expresses mucosal addressin cell adhesion molecule-1 (MAdCAM-1), a ligand for L-selectin. Our results showed for the first time that the expression of the adhesion molecule L-selectin is important for muscle homing of MDSCs. This discovery will aid in the improvement of a potential therapy for muscular dystrophy based on the systemic delivery of MDSCs.
Cancer Research | 2007
Federica Pisati; Marzia Belicchi; Francesco Acerbi; C. Marchesi; Carlo Giussani; Manuela Gavina; Sophie Javerzat; Martin Hagedorn; Giorgio Carrabba; Valeria Lucini; S. M. Gaini; Nereo Bresolin; Lorenzo Bello; Andreas Bikfalvi; Yvan Torrente
Glioblastomas represent an important cause of cancer-related mortality with poor survival. Despite many advances, the mean survival time has not significantly improved in the last decades. New experimental approaches have shown tumor regression after the grafting of neural stem cells and human mesenchymal stem cells into experimental intracranial gliomas of adult rodents. However, the cell source seems to be an important limitation for autologous transplantation in glioblastoma. In the present study, we evaluated the tumor targeting and antitumor activity of human skin-derived stem cells (hSDSCs) in human brain tumor models. The hSDSCs exhibit tumor targeting characteristics in vivo when injected into the controlateral hemisphere or into the tail vein of mice. When implanted directly into glioblastomas, hSDSCs distributed themselves extensively throughout the tumor mass, reduced tumor vessel density, and decreased angiogenic sprouts. In addition, transplanted hSDSCs differentiate into pericyte cell and release high amounts of human transforming growth factor-beta1 with low expression of vascular endothelial growth factor, which may contribute to the decreased tumor cell invasion and number of tumor vessels. In long-term experiments, the hSDSCs were also able to significantly inhibit tumor growth and to prolong animal survival. Similar behavior was seen when hSDSCs were implanted into two different tumor models, the chicken embryo experimental glioma model and the transgenic Tyrp1-Tag mice. Taken together, these data validate the use of hSDSCs for targeting human brain tumors. They may represent therapeutically effective cells for the treatment of intracranial tumors after autologous transplantation.
Cancer Research | 2014
Rebecca Favaro; Irene Appolloni; Serena Pellegatta; Alexandra Badiola Sanga; Pierfrancesco Pagella; Eleonora Gambini; Federica Pisati; Sergio Ottolenghi; Maria Foti; Gaetano Finocchiaro; Paolo Malatesta; Silvia K. Nicolis
The stem cell-determining transcription factor Sox2 is required for the maintenance of normal neural stem cells. In this study, we investigated the requirement for Sox2 in neural cancer stem-like cells using a conditional genetic deletion mutant in a mouse model of platelet-derived growth factor-induced malignant oligodendroglioma. Transplanting wild-type oligodendroglioma cells into the brain generated lethal tumors, but mice transplanted with Sox2-deleted cells remained free of tumors. Loss of the tumor-initiating ability of Sox2-deleted cells was reversed by lentiviral-mediated expression of Sox2. In cell culture, Sox2-deleted tumor cells were highly sensitive to differentiation stimuli, displaying impaired proliferation, increased cell death, and aberrant differentiation. Gene expression analysis revealed an early transcriptional response to Sox2 loss. The observed requirement of oligodendroglioma stem cells for Sox2 suggested its relevance as a target for therapy. In support of this possibility, an immunotherapeutic approach based on immunization of mice with SOX2 peptides delayed tumor development and prolonged survival. Taken together, our results showed that Sox2 is essential for tumor initiation by mouse oligodendroglioma cells, and they illustrated a Sox2-directed strategy of immunotherapy to eradicate tumor-initiating cells.
Stem cell reports | 2013
Leonid Schneider; Serena Pellegatta; Rebecca Favaro; Federica Pisati; Paola Roncaglia; Giuseppe Testa; Silvia K. Nicolis; Gaetano Finocchiaro; Fabrizio d’Adda di Fagagna
Summary The consequences of DNA damage generation in mammalian somatic stem cells, including neural stem cells (NSCs), are poorly understood despite their potential relevance for tissue homeostasis. Here, we show that, following ionizing radiation-induced DNA damage, NSCs enter irreversible proliferative arrest with features of cellular senescence. This is characterized by increased cytokine secretion, loss of stem cell markers, and astrocytic differentiation. We demonstrate that BMP2 is necessary to induce expression of the astrocyte marker GFAP in irradiated NSCs via a noncanonical signaling pathway engaging JAK-STAT. This is promoted by ATM and antagonized by p53. Using a SOX2-Cre reporter mouse model for cell-lineage tracing, we demonstrate irradiation-induced NSC differentiation in vivo. Furthermore, glioblastoma assays reveal that irradiation therapy affects the tumorigenic potential of cancer stem cells by ablating self-renewal and inducing astroglial differentiation.
Collaboration
Dive into the Federica Pisati's collaboration.
Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico
View shared research outputsFondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico
View shared research outputsFondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico
View shared research outputs