Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Federica Tonon is active.

Publication


Featured researches published by Federica Tonon.


Materials | 2015

Polysaccharides for the Delivery of Antitumor Drugs

Bianca Posocco; Eva Dreussi; Jacopo de Santa; Giuseppe Toffoli; Michela Abrami; Francesco Musiani; Mario Grassi; Rossella Farra; Federica Tonon; Gabriele Grassi; Barbara Dapas

Among the several delivery materials available so far, polysaccharides represent very attractive molecules as they can undergo a wide range of chemical modifications, are biocompatible, biodegradable, and have low immunogenic properties. Thus, polysaccharides can contribute to significantly overcome the limitation in the use of many types of drugs, including anti-cancer drugs. The use of conventional anti-cancer drugs is hampered by their high toxicity, mostly depending on the indiscriminate targeting of both cancer and normal cells. Additionally, for nucleic acid based drugs (NABDs), an emerging class of drugs with potential anti-cancer value, the practical use is problematic. This mostly depends on their fast degradation in biological fluids and the difficulties to cross cell membranes. Thus, for both classes of drugs, the development of optimal delivery materials is crucial. Here we discuss the possibility of using different kinds of polysaccharides, such as chitosan, hyaluronic acid, dextran, and pullulan, as smart drug delivery materials. We first describe the main features of polysaccharides, then a general overview about the aspects ruling drug release mechanisms and the pharmacokinetic are reported. Finally, notable examples of polysaccharide-based delivery of conventional anti-cancer drugs and NABDs are reported. Whereas additional research is required, the promising results obtained so far, fully justify further efforts, both in terms of economic support and investigations in the field of polysaccharides as drug delivery materials.


Current Medicinal Chemistry | 2013

Therapeutic Potential of Nucleic Acid-Based Drugs in Coronary Hyper- Proliferative Vascular Diseases

Gabriele Grassi; Bruna Scaggiante; Barbara Dapas; Rossella Farra; Federica Tonon; Gaetano Lamberti; Anna Angela Barba; Simona Maria Fiorentino; Nicola Fiotti; Fabrizio Zanconati; Michela Abrami; Mario Grassi

The thickening of the vessel wall (intimal hyperplasia) is a pathological process which often follows revascularization approaches such as transluminal angioplasty and artery bypass graft, procedures used to re-vascularize stenotic artery. Despite the significant improvements in the treatment of intimal hyperplasia obtained in the last years, the problem has not completely solved. Nucleic acid based-drugs (NABDs) represent an emergent class of molecules with potential therapeutic value for the treatment of intimal hyperplasia. NABDs of interest in the field of intimal hyperplasia are: ribozymes, DNAzymes, antisense oligonucleotides, decoy oligonucleotides, small interfering RNAs and micro interfering RNAs. These molecules can recognize, in a sequencespecific fashion, a target which, depending on the different NABDs, can be represented by a nucleic acid or a protein. Upon binding, NABDs can down-modulate the functions of the target (mRNA/proteins) and thus they are used to impair the functions of disease-causing biological molecules.In spite of the great therapeutic potential demonstrated by NABDs in many experimental model of intima hyperplasia, their practical use is hindered by the necessity to identify optimal delivery systems to the vasculature. In the first part of this review a brief description of the clinical problem related to intima hyperplasia formation after revascularization procedures is reported. In the second part, the attention is focused on the experimental evidences of NABD therapeutic potential in the prevention of intimal hyperplasia. Finally, in the third part, we will describe the strategies developed to optimize NABD delivery to the diseased vessel.


Current Drug Metabolism | 2015

Novel Lipid and Polymeric Materials as Delivery Systems for Nucleic Acid Based Drugs.

Anna Angela Barba; Gaetano Lamberti; Carla Sardo; Barbara Dapas; Michela Abrami; Mario Grassi; Rossella Farra; Federica Tonon; Giancarlo Forte; Francesco Musiani; Mariano Licciardi; Gabriele Pozzato; Fabrizio Zanconati; Bruna Scaggiante; Gabriele Grassi; Gennara Cavallaro

Nucleic acid based drugs (NADBs) are short DNA/RNA molecules that include among others, antisense oligonucleotides, aptamers, small interfering RNAs and micro-interfering RNAs. Despite the different mechanisms of actions, NABDs have the ability to combat the effects of pathological gene expression in many experimental systems. Thus, nowadays, NABDs are considered to have a great therapeutic potential, possibly superior to that of available drugs. Unfortunately, however, the lack of effective delivery systems limits the practical use of NABDs. Due to their hydrophilic nature, NABDs cannot efficiently cross cellular membrane; in addition, they are subjected to fast degradation by cellular and extracellular nucleases. Together these aspects make the delivery of NABDs as naked molecules almost un-effective. To optimize NABD delivery, several solutions have been investigated. From the first attempts described in the beginning of the 1980s, a burst in the number of published papers occurred in the beginning of 1990 s reaching a peak in 2012-13. The extensive amount of work performed so far clearly witnesses the interest of the scientific community in this topic. In the present review, we will concentrate on the description of the most interesting advances in the field. Particular emphasis will be put on polymeric and lipid materials used alone or in combination with a promising delivery strategy based on the use of carbon nanotubes. The data presented suggest that, although further improvements are required, we are not far from the identification of effective delivery systems for NABDs thus making the clinical use of these molecules closer to reality.


International Journal of Pharmaceutics | 2016

Rapid and cost-effective xenograft hepatocellular carcinoma model in Zebrafish for drug testing

Federica Tonon; Cristina Zennaro; Barbara Dapas; Michele Carraro; Massimo Mariotti; Gabriele Grassi

We developed a novel, rapid and cost-effective Zebrafish xenograft model of hepatocellular carcinoma (HCC) for drug screening in the disease. Following injection into the yolk sack of Zebrafish larvae of the human HCC cell line JHH6 stained by a vital dye, tumor mass growth was followed by fluorescence microscopy and by human Ki67 quantification. Tumor induced neo-angiogenesis was evaluated by alkaline phosphatase staining of the vessels, by using the Tg(fli1:EGFP)y1 strain of Zebrafish and by the quantification of the zebrafish vascular endothelial growth factor and of its receptor. We show that it is feasible to micro-inject JHH6 in Zebrafish larvae, that injected cells can grow for different days and that this induces a marked neo-angiogenesis. Finally, we show that our model allows testing the effects of anti-HCC drugs such as Bortezomib. Compared to more complex HCC mouse models, our model is far less expensive, faster to set up and does not need immunosuppressant treatment. Finally, the model makes use of JHH6, an aggressive form of HCC cell line never tested before in Zebrafish. In conclusion, the possibility to test anti HCC/neo-angiogenesis drugs makes our JHH6 model useful to select therapeutic molecules for a highly vascularized tumor such as HCC.


Expert Opinion on Drug Delivery | 2017

Strategies to optimize siRNA delivery to hepatocellular carcinoma cells

Lucia Scarabel; Francesca Perrone; Marica Garziera; Rossella Farra; Mario Grassi; Francesco Musiani; Concetta Russo Spena; Barbara Salis; Lucia De Stefano; Giuseppe Toffoli; Flavio Rizzolio; Federica Tonon; Michela Abrami; Gianluca Chiarappa; Gabriele Pozzato; Giancarlo Forte; Gabriele Grassi; Barbara Dapas

ABSTRACT Introduction: hepatocellular carcinoma (hcc) is the predominant form of primary liver cancer and the second leading cause of cancer-associated mortality worldwide. available therapies for hcc have limited efficacy due to often late diagnosis and the general resistance of hcc to anti-cancer agents; therefore, the development of novel therapeutics is urgently required. small-interfering rna (sirna) molecules are short, double-stranded rnas that specifically recognize and bind the mrna of a target gene to inhibit gene expression. despite the great therapeutic potential of sirnas towards many human tumors including hcc, their use is limited by suboptimal delivery. Areas covered: In this review, we outline the current data regarding the therapeutic potential of siRNAs in HCC and describe the development of effective siRNA delivery systems. We detail the key problems associated with siRNA delivery and discuss the possible solutions. Finally, we provide examples of the various siRNA delivery strategies that have been employed in animal models of HCC and in human patients enrolled in clinical trials. Expert opinion: Despite the existing difficulties in siRNA delivery for HCC, the increasing scientific attention and breakthrough studies in this field is facilitating the design of novel and efficient technical solutions that may soon find practical applications.


PLOS ONE | 2017

The renal phenotype of allopurinol-treated HPRT-deficient mouse

Cristina Zennaro; Federica Tonon; Paola Zarattini; Milan Clai; Alessandro Corbelli; Michele Carraro; Marialaura Marchetti; Luca Ronda; Gianluca Paredi; Maria Pia Rastaldi; Riccardo Percudani

Excess of uric acid is mainly treated with xanthine oxidase (XO) inhibitors, also called uricostatics because they block the conversion of hypoxanthine and xanthine into urate. Normally, accumulation of upstream metabolites is prevented by the hypoxanthine-guanine phosphoribosyltransferase (HPRT) enzyme. The recycling pathway, however, is impaired in the presence of HPRT deficiency, as observed in Lesch-Nyhan disease. To gain insights into the consequences of purine accumulation with HPRT deficiency, we investigated the effects of the XO inhibitor allopurinol in Hprt-lacking (HPRT-/-) mice. Allopurinol was administered in the drinking water of E12-E14 pregnant mothers at dosages of 150 or 75 μg/ml, and mice sacrificed after weaning. The drug was well tolerated by wild-type animals and heterozygous HPRT+/- mice. Instead, a profound alteration of the renal function was observed in the HPRT-/- model. Increased hypoxanthine and xanthine concentrations were found in the blood. The kidneys showed a yellowish appearance, diffuse interstitial nephritis, with dilated tubules, inflammatory and fibrotic changes of the interstitium. There were numerous xanthine tubular crystals, as determined by HPLC analysis. Oil red O staining demonstrated lipid accumulation in the same location of xanthine deposits. mRNA analysis showed increased expression of adipogenesis-related molecules as well as profibrotic and proinflammatory pathways. Immunostaining showed numerous monocyte-macrophages and overexpression of alpha-smooth muscle actin in the tubulointerstitium. In vitro, addition of xanthine to tubular cells caused diffuse oil red O positivity and modification of the cell phenotype, with loss of epithelial features and appearance of mesenchymal characteristics, similarly to what was observed in vivo. Our results indicate that in the absence of HPRT, blockade of XO by allopurinol causes rapidly developing renal failure due to xanthine deposition within the mouse kidney. Xanthine seems to be directly involved in promoting lipid accumulation and subsequent phenotype changes of tubular cells, with activation of inflammation and fibrosis.


International Journal of Nanomedicine | 2016

A nanoporous surface is essential for glomerular podocyte differentiation in three-dimensional culture.

Cristina Zennaro; Maria Pia Rastaldi; Gerald James Bakeine; Riccarda Delfino; Federica Tonon; Rossella Farra; Gabriele Grassi; Mary Artero; Massimo Tormen; Michele Carraro

Although it is well recognized that cell–matrix interactions are based on both molecular and geometrical characteristics, the relationship between specific cell types and the three-dimensional morphology of the surface to which they are attached is poorly understood. This is particularly true for glomerular podocytes – the gatekeepers of glomerular filtration – which completely enwrap the glomerular basement membrane with their primary and secondary ramifications. Nanotechnologies produce biocompatible materials which offer the possibility to build substrates which differ only by topology in order to mimic the spatial organization of diverse basement membranes. With this in mind, we produced and utilized rough and porous surfaces obtained from silicon to analyze the behavior of two diverse ramified cells: glomerular podocytes and a neuronal cell line used as a control. Proper differentiation and development of ramifications of both cell types was largely influenced by topographical characteristics. Confirming previous data, the neuronal cell line acquired features of maturation on rough nanosurfaces. In contrast, podocytes developed and matured preferentially on nanoporous surfaces provided with grooves, as shown by the organization of the actin cytoskeleton stress fibers and the proper development of vinculin-positive focal adhesions. On the basis of these findings, we suggest that in vitro studies regarding podocyte attachment to the glomerular basement membrane should take into account the geometrical properties of the surface on which the tests are conducted because physiological cellular activity depends on the three-dimensional microenvironment.


Molecules | 2018

Polymer-Mediated Delivery of siRNAs to Hepatocellular Carcinoma: Variables Affecting Specificity and Effectiveness

Rossella Farra; Francesco Musiani; Francesca Perrone; Maja Čemažar; Urška Kamenšek; Federica Tonon; Michela Abrami; Aleš Ručigaj; Mario Grassi; Gabriele Pozzato; Deborah Bonazza; Fabrizio Zanconati; Giancarlo Forte; Maguie El Boustani; Lucia Scarabel; Marica Garziera; Concetta Russo Spena; Lucia De Stefano; Barbara Salis; Giuseppe Toffoli; Flavio Rizzolio; Gabriele Grassi; Barbara Dapas

Despite the advances in anticancer therapies, their effectiveness for many human tumors is still far from being optimal. Significant improvements in treatment efficacy can come from the enhancement of drug specificity. This goal may be achieved by combining the use of therapeutic molecules with tumor specific effects and delivery carriers with tumor targeting ability. In this regard, nucleic acid-based drug (NABD) and particularly small interfering RNAs (siRNAs), are attractive molecules due to the possibility to be engineered to target specific tumor genes. On the other hand, polymeric-based delivery systems are emerging as versatile carriers to generate tumor-targeted delivery systems. Here we will focus on the most recent findings in the selection of siRNA/polymeric targeted delivery systems for hepatocellular carcinoma (HCC), a human tumor for which currently available therapeutic approaches are poorly effective. In addition, we will discuss the most attracting and, in our opinion, promising siRNA-polymer combinations for HCC in relation to the biological features of HCC tissue. Attention will be also put on the mathematical description of the mechanisms ruling siRNA-carrier delivery, this being an important aspect to improve effectiveness reducing the experimental work.


Cell Death & Differentiation | 2018

Cell-autonomous and cell non-autonomous downregulation of tumor suppressor DAB2IP by microRNA-149-3p promotes aggressiveness of cancer cells

Arianna Bellazzo; Giulio Di Minin; Elena Valentino; Daria Sicari; Denis Torre; Luigi Marchionni; Federica Serpi; Michael B. Stadler; Daniela Taverna; Gaia Zuccolotto; Isabella Monia Montagner; Antonio Rosato; Federica Tonon; Cristina Zennaro; Chiara Agostinis; Roberta Bulla; Miguel Mano; Giannino Del Sal; Licio Collavin

The tumor suppressor DAB2IP contributes to modulate the network of information established between cancer cells and tumor microenvironment. Epigenetic and post-transcriptional inactivation of this protein is commonly observed in multiple human malignancies, and can potentially favor progression of tumors driven by a variety of genetic mutations. Performing a high-throughput screening of a large collection of human microRNA mimics, we identified miR-149-3p as a negative post-transcriptional modulator of DAB2IP. By efficiently downregulating DAB2IP, this miRNA enhances cancer cell motility and invasiveness, facilitating activation of NF-kB signaling and promoting expression of pro-inflammatory and pro-angiogenic factors. In addition, we found that miR-149-3p secreted by prostate cancer cells induces DAB2IP downregulation in recipient vascular endothelial cells, stimulating their proliferation and motility, thus potentially remodeling the tumor microenvironment. Finally, we found that inhibition of endogenous miR-149-3p restores DAB2IP activity and efficiently reduces tumor growth and dissemination of malignant cells. These observations suggest that miR-149-3p can promote cancer progression via coordinated inhibition of DAB2IP in tumor cells and in stromal cells.


Current Drug Metabolism | 2013

Aptamers as Targeting Delivery Devices or Anti-cancer Drugs for Fighting Tumors

Bruna Scaggiante; Barbara Dapas; Rossella Farra; Mario Grassi; Gabriele Pozzato; Carlo Giansante; Nicola Fiotti; Elisa Tamai; Federica Tonon; Gabriele Grassi

Collaboration


Dive into the Federica Tonon's collaboration.

Top Co-Authors

Avatar

Gabriele Grassi

International Centre for Genetic Engineering and Biotechnology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge