Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Federica Villanova is active.

Publication


Featured researches published by Federica Villanova.


PLOS ONE | 2011

The IL23R R381Q Gene Variant Protects against Immune-Mediated Diseases by Impairing IL-23-Induced Th17 Effector Response in Humans

Paola Di Meglio; Antonella Di Cesare; Ute Laggner; Chung-Ching Chu; Luca Napolitano; Federica Villanova; Isabella Tosi; Francesca Capon; Richard C. Trembath; Ketty Peris; Frank O. Nestle

IL-23 and Th17 cells are key players in tissue immunosurveillance and are implicated in human immune-mediated diseases. Genome-wide association studies have shown that the IL23R R381Q gene variant protects against psoriasis, Crohns disease and ankylosing spondylitis. We investigated the immunological consequences of the protective IL23R R381Q gene variant in healthy donors. The IL23R R381Q gene variant had no major effect on Th17 cell differentiation as the frequency of circulating Th17 cells was similar in carriers of the IL23R protective (A) and common (G) allele. Accordingly, Th17 cells generated from A and G donors produced similar amounts of Th17 cytokines. However, IL-23-mediated Th17 cell effector function was impaired, as Th17 cells from A allele carriers had significantly reduced IL-23-induced IL-17A production and STAT3 phosphorylation compared to G allele carriers. Our functional analysis of a human disease-associated gene variant demonstrates that IL23R R381Q exerts its protective effects through selective attenuation of IL-23-induced Th17 cell effector function without interfering with Th17 differentiation, and highlights its importance in the protection against IL-23-induced tissue pathologies.


Journal of Investigative Dermatology | 2014

Characterization of Innate Lymphoid Cells in Human Skin and Blood Demonstrates Increase of NKp44+ ILC3 in Psoriasis

Federica Villanova; Barry Flutter; Isabella Tosi; Katarzyna Grys; Hemawtee Sreeneebus; Gayathri K. Perera; A. A. Chapman; Catherine Smith; Paola Di Meglio; Frank O. Nestle

Innate lymphoid cells (ILC) are increasingly appreciated as key regulators of tissue immunity. However, their role in human tissue homeostasis and disease remains to be fully elucidated. Here we characterise the ILC in human skin from healthy individuals and from the inflammatory skin disease psoriasis. We show that a substantial proportion of IL-17A and IL-22 producing cells in skin and blood of normal individuals and psoriasis patients are CD3 negative innate lymphocytes. Deep immunophenotyping of human ILC subsets showed a statistically significant increase in the frequency of circulating NKp44+ ILC3 in blood of psoriasis patients compared to healthy individuals or atopic dermatitis patients. More than 50% of circulating NKp44+ ILC3 expressed cutaneous lymphocyte-associated antigen indicating their potential for skin homing. Analysis of skin tissue revealed a significantly increased frequency of total ILC in skin compared to blood. Moreover the frequency of NKp44+ ILC3 was significantly increased in non-lesional psoriatic skin compared to normal skin. A detailed time course of a psoriasis patient treated with anti-TNF showed a close association between therapeutic response, decrease in inflammatory skin lesions, and decrease of circulating NKp44+ ILC3. Overall, data from this initial observational study suggest a potential role for NKp44+ ILC3 in psoriasis pathogenesis.


Immunity | 2014

Activation of the Aryl Hydrocarbon Receptor Dampens the Severity of Inflammatory Skin Conditions

Paola Di Meglio; João H. Duarte; Helena Ahlfors; Nick D.L. Owens; Ying Li; Federica Villanova; Isabella Tosi; Keiji Hirota; Frank O. Nestle; Ulrich Mrowietz; Michael J. Gilchrist; Brigitta Stockinger

Summary Environmental stimuli are known to contribute to psoriasis pathogenesis and that of other autoimmune diseases, but the mechanisms are largely unknown. Here we show that the aryl hydrocarbon receptor (AhR), a transcription factor that senses environmental stimuli, modulates pathology in psoriasis. AhR-activating ligands reduced inflammation in the lesional skin of psoriasis patients, whereas AhR antagonists increased inflammation. Similarly, AhR signaling via the endogenous ligand FICZ reduced the inflammatory response in the imiquimod-induced model of skin inflammation and AhR-deficient mice exhibited a substantial exacerbation of the disease, compared to AhR-sufficient controls. Nonhematopoietic cells, in particular keratinocytes, were responsible for this hyperinflammatory response, which involved upregulation of AP-1 family members of transcription factors. Thus, our data suggest a critical role for AhR in the regulation of inflammatory responses and open the possibility for novel therapeutic strategies in chronic inflammatory disorders.


Cell | 2015

The genetic architecture of the human immune system: A bioresource for autoimmunity and disease pathogenesis

Mario Roederer; Lydia Quaye; Massimo Mangino; Margaret H. Beddall; Yolanda D. Mahnke; Pratip K. Chattopadhyay; Isabella Tosi; Luca Napolitano; Manuela Terranova Barberio; Cristina Menni; Federica Villanova; Paola Di Meglio; Tim D. Spector; Frank O. Nestle

Despite recent discoveries of genetic variants associated with autoimmunity and infection, genetic control of the human immune system during homeostasis is poorly understood. We undertook a comprehensive immunophenotyping approach, analyzing 78,000 immune traits in 669 female twins. From the top 151 heritable traits (up to 96% heritable), we used replicated GWAS to obtain 297 SNP associations at 11 genetic loci, explaining up to 36% of the variation of 19 traits. We found multiple associations with canonical traits of all major immune cell subsets and uncovered insights into genetic control for regulatory T cells. This data set also revealed traits associated with loci known to confer autoimmune susceptibility, providing mechanistic hypotheses linking immune traits with the etiology of disease. Our data establish a bioresource that links genetic control elements associated with normal immune traits to common autoimmune and infectious diseases, providing a shortcut to identifying potential mechanisms of immune-related diseases.


Annals of the Rheumatic Diseases | 2013

Biomarkers in psoriasis and psoriatic arthritis

Federica Villanova; Paola Di Meglio; Frank O. Nestle

Psoriasis is a common immune-mediated disease of the skin, which associates in 20–30% of patients with psoriatic arthritis (PsA). The immunopathogenesis of both conditions is not fully understood as it is the result of a complex interaction between genetic, environmental and immunological factors. At present there is no cure for psoriasis and there are no specific markers that can accurately predict disease progression and therapeutic response. Therefore, biomarkers for disease prognosis and response to treatment are urgently needed to help clinicians with objective indications to improve patient management and outcomes. Although many efforts have been made to identify psoriasis/PsA biomarkers none of them has yet been translated into routine clinical practice. In this review we summarise the different classes of possible biomarkers explored in psoriasis and PsA so far and discuss novel strategies for biomarker discovery.


Scientific Reports | 2016

Standardizing Flow Cytometry Immunophenotyping Analysis from the Human ImmunoPhenotyping Consortium

Greg Finak; Marc Langweiler; Maria Jaimes; Mehrnoush Malek; Jafar Taghiyar; Yael Korin; Lesley Devine; Gerlinde Obermoser; Marcin L. Pekalski; Nikolas Pontikos; Alain Diaz; Susanne Heck; Federica Villanova; Nadia Terrazzini; Florian Kern; Yu Qian; Rick Stanton; Kui Wang; Aaron Brandes; John Ramey; Nima Aghaeepour; Tim R. Mosmann; Richard H. Scheuermann; Elaine F. Reed; Karolina Palucka; Virginia Pascual; Bonnie B. Blomberg; Frank O. Nestle; Robert B. Nussenblatt; Ryan R. Brinkman

Standardization of immunophenotyping requires careful attention to reagents, sample handling, instrument setup, and data analysis, and is essential for successful cross-study and cross-center comparison of data. Experts developed five standardized, eight-color panels for identification of major immune cell subsets in peripheral blood. These were produced as pre-configured, lyophilized, reagents in 96-well plates. We present the results of a coordinated analysis of samples across nine laboratories using these panels with standardized operating procedures (SOPs). Manual gating was performed by each site and by a central site. Automated gating algorithms were developed and tested by the FlowCAP consortium. Centralized manual gating can reduce cross-center variability, and we sought to determine whether automated methods could streamline and standardize the analysis. Within-site variability was low in all experiments, but cross-site variability was lower when central analysis was performed in comparison with site-specific analysis. It was also lower for clearly defined cell subsets than those based on dim markers and for rare populations. Automated gating was able to match the performance of central manual analysis for all tested panels, exhibiting little to no bias and comparable variability. Standardized staining, data collection, and automated gating can increase power, reduce variability, and streamline analysis for immunophenotyping.


Journal of Investigative Dermatology | 2013

The IL23R A/Gln381 Allele Promotes IL-23 Unresponsiveness in Human Memory T-Helper 17 Cells and Impairs Th17 Responses in Psoriasis Patients

Paola Di Meglio; Federica Villanova; Luca Napolitano; Isabella Tosi; Manuela Terranova Barberio; Rose K. Mak; Sarah Nutland; Catherine Smith; Jonathan Barker; John A. Todd; Frank O. Nestle

We and others have shown that the minor, nonconserved allele Gln381 of the Arg381Gln single-nucleotide polymorphism (rs11209026G>A) of the IL-23 receptor gene (IL23R) protects against psoriasis. Moreover, we have recently shown impaired IL-23-induced IL-17A production and STAT-3 phosphorylation in Th17 cells generated in vitro from healthy individuals heterozygous for the protective A allele (GA). However, the biological effect of this variant has not been determined in homozygous carriers of the protective A allele (AA), nor in psoriatic patients. Here we expand our functional investigation of the IL23R Arg381Gln gene variant to include AA homozygous individuals. By using isolated memory CD4+ T cells, we found attenuated IL-23-induced Th17 response in heterozygous individuals. Moreover, we found that AA homozygous individuals were strikingly unresponsive to IL-23, with minimal or no IL-17A and IL-17F production and failure of human memory Th17 cell survival/expansion. Finally, IL-23-induced Th17 response was also attenuated in age- and sex-matched GA versus GG psoriatic patients undergoing systemic treatment. Taken together, our data provide evidence for an allele-dosage effect for IL-23R Gln381 and indicate that common gene alleles associated with complex diseases might have biological effects of considerable magnitude in homozygous carriers.


OncoImmunology | 2015

Elevated IgG4 in patient circulation is associated with the risk of disease progression in melanoma.

Panagiotis Karagiannis; Federica Villanova; Debra H. Josephs; Isabel Correa; Mieke Van Hemelrijck; Carl Hobbs; Louise Saul; Isioma U. Egbuniwe; Isabella Tosi; Kristina M. Ilieva; Emma Kent; Eduardo Calonje; Mark Harries; Ian S. Fentiman; Joyce Taylor-Papadimitriou; Joy Burchell; James Spicer; Katie E. Lacy; Frank O. Nestle; Sophia N. Karagiannis

Emerging evidence suggests pathological and immunoregulatory functions for IgG4 antibodies and IgG4+ B cells in inflammatory diseases and malignancies. We previously reported that IgG4 antibodies restrict activation of immune effector cell functions and impair humoral responses in melanoma. Here, we investigate IgG4 as a predictor of risk for disease progression in a study of human sera (n = 271: 167 melanoma patients; 104 healthy volunteers) and peripheral blood B cells (n = 71: 47 melanoma patients; 24 healthy volunteers). IgG4 (IgG4/IgGtotal) serum levels were elevated in melanoma. High relative IgG4 levels negatively correlated with progression-free survival (PFS) and overall survival. In early stage (I–II) disease, serum IgG4 was independently negatively prognostic for progression-free survival, as was elevation of IgG4+ circulating B cells (CD45+CD22+CD19+CD3−CD14−). In human tissues (n = 256; 108 cutaneous melanomas; 56 involved lymph nodes; 60 distant metastases; 32 normal skin samples) IgG4+ cell infiltrates were found in 42.6% of melanomas, 21.4% of involved lymph nodes and 30% of metastases, suggesting inflammatory conditions that favor IgG4 at the peripheral and local levels. Consistent with emerging evidence for an immunosuppressive role for IgG4, these findings indicate association of elevated IgG4 with disease progression and less favorable clinical outcomes. Characterizing immunoglobulin and other humoral immune profiles in melanoma might identify valuable prognostic tools for patient stratification and in the future lead to more effective treatments less prone to tumor-induced blockade mechanisms.


PLOS ONE | 2013

Integration of Lyoplate Based Flow Cytometry and Computational Analysis for Standardized Immunological Biomarker Discovery

Federica Villanova; Paola Di Meglio; Margaret Inokuma; Nima Aghaeepour; Esperanza Perucha; Jennifer Mollon; Laurel Nomura; Maria P. Hernandez-Fuentes; Andrew P. Cope; A Toby Prevost; Susanne Heck; Vernon C. Maino; Graham M. Lord; Ryan R. Brinkman; Frank O. Nestle

Discovery of novel immune biomarkers for monitoring of disease prognosis and response to therapy in immune-mediated inflammatory diseases is an important unmet clinical need. Here, we establish a novel framework for immunological biomarker discovery, comparing a conventional (liquid) flow cytometry platform (CFP) and a unique lyoplate-based flow cytometry platform (LFP) in combination with advanced computational data analysis. We demonstrate that LFP had higher sensitivity compared to CFP, with increased detection of cytokines (IFN-γ and IL-10) and activation markers (Foxp3 and CD25). Fluorescent intensity of cells stained with lyophilized antibodies was increased compared to cells stained with liquid antibodies. LFP, using a plate loader, allowed medium-throughput processing of samples with comparable intra- and inter-assay variability between platforms. Automated computational analysis identified novel immunophenotypes that were not detected with manual analysis. Our results establish a new flow cytometry platform for standardized and rapid immunological biomarker discovery with wide application to immune-mediated diseases.


Scientific Reports | 2016

IgG subclass switching and clonal expansion in cutaneous melanoma and normal skin.

Louise Saul; Kristina M. Ilieva; Heather J. Bax; Panagiotis Karagiannis; Isabel Correa; Irene Rodriguez-Hernandez; Debra H. Josephs; Isabella Tosi; Isioma U. Egbuniwe; Sara Lombardi; Silvia Crescioli; Carl Hobbs; Federica Villanova; Anthony Cheung; Jenny Geh; Ciaran Healy; Mark Harries; Victoria Sanz-Moreno; David J. Fear; James Spicer; Katie E. Lacy; Frank O. Nestle; Sophia N. Karagiannis

B cells participate in immune surveillance in human circulation and tissues, including tumors such as melanoma. By contrast, the role of humoral responses in cutaneous immunity is underappreciated. We report circulating skin-homing CD22+CLA+B cells in healthy volunteers and melanoma patients (n = 73) and CD22+ cells in melanoma and normal skin samples (n = 189). Normal and malignant skin featured mature IgG and CD22 mRNA, alongside mRNA for the transiently-expressed enzyme Activation-induced cytidine Deaminase (AID). Gene expression analyses of publically-available data (n = 234 GEO, n = 384 TCGA) confirmed heightened humoral responses (CD20, CD22, AID) in melanoma. Analyses of 51 melanoma-associated and 29 normal skin-derived IgG sequence repertoires revealed lower IgG1/IgGtotal representation compared with antibodies from circulating B cells. Consistent with AID, comparable somatic hypermutation frequencies and class-switching indicated affinity-matured antibodies in normal and malignant skin. A melanoma-associated antibody subset featured shorter complementarity-determining (CDR3) regions relative to those from circulating B cells. Clonal amplification in melanoma-associated antibodies and homology modeling indicated differential potential antigen recognition profiles between normal skin and melanoma sequences, suggesting distinct antibody repertoires. Evidence for IgG-expressing B cells, class switching and antibody maturation in normal and malignant skin and clonally-expanded antibodies in melanoma, support the involvement of mature B cells in cutaneous immunity.

Collaboration


Dive into the Federica Villanova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susanne Heck

Guy's and St Thomas' NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge