Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frank O. Nestle is active.

Publication


Featured researches published by Frank O. Nestle.


Nature | 2007

Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide

Roberto Lande; Josh Gregorio; Valeria Facchinetti; Bithi Chatterjee; Yi Hong Wang; Bernhard Homey; Wei Cao; Yui Hsi Wang; Bing Su; Frank O. Nestle; Tomasz Zal; Ira Mellman; Jens-Michael Schröder; Yong-Jun Liu; Michel Gilliet

Plasmacytoid dendritic cells (pDCs) sense viral and microbial DNA through endosomal Toll-like receptors to produce type 1 interferons. pDCs do not normally respond to self-DNA, but this restriction seems to break down in human autoimmune disease by an as yet poorly understood mechanism. Here we identify the antimicrobial peptide LL37 (also known as CAMP) as the key factor that mediates pDC activation in psoriasis, a common autoimmune disease of the skin. LL37 converts inert self-DNA into a potent trigger of interferon production by binding the DNA to form aggregated and condensed structures that are delivered to and retained within early endocytic compartments in pDCs to trigger Toll-like receptor 9. Thus, our data uncover a fundamental role of an endogenous antimicrobial peptide in breaking innate tolerance to self-DNA and suggest that this pathway may drive autoimmunity in psoriasis.


The Lancet | 2005

Infliximab induction and maintenance therapy for moderate-to-severe psoriasis : a phase III, multicentre, double-blind trial

Kristian Reich; Frank O. Nestle; Kim Papp; Jean-Paul Ortonne; Robert Evans; Cynthia Guzzo; Shu Li; Lisa T. Dooley; C.E.M. Griffiths

BACKGROUND Tumour necrosis factor alpha (TNFalpha) is thought to play a part in the pathogenesis of psoriasis. We assessed the efficacy and safety of continuous treatment with infliximab, a monoclonal antibody that binds to and neutralises the activity of TNFalpha, in patients with psoriasis. METHODS In this phase III, multicentre, double-blind trial, 378 patients with moderate-to-severe plaque psoriasis were allocated in a 4:1 ratio to receive infusions of either infliximab 5 mg/kg or placebo at weeks 0, 2, and 6, then every 8 weeks to week 46. At week 24, placebo-treated patients crossed over to infliximab treatment. Skin and nail signs of psoriasis were assessed using the psoriasis area and severity index (PASI) and nail psoriasis severity index (NAPSI), respectively. The primary endpoint, analysed on an intention-to-treat-basis, was the proportion of patients achieving at least a 75% improvement in PASI from baseline to week 10. FINDINGS At week 10, 80% (242/301) of patients treated with infliximab achieved at least a 75% improvement from their baseline PASI (PASI 75) and 57% (172/301) achieved at least a 90% improvement (PASI 90), compared with 3% and 1% in the placebo group, respectively (p<0.0001). At week 24, PASI 75 (82% for infliximab vs 4% for placebo) and PASI 90 (58%vs 1%) were maintained (p<0.0001). At week 50, 61% achieved PASI 75 and 45% achieved PASI 90 in the infliximab group. Infliximab was generally well tolerated in most patients. INTERPRETATION Infliximab is effective in both an induction and maintenance regimen for the treatment of moderate-to-severe psoriasis, with a high percentage of patients achieving sustained PASI 75 and PASI 90 improvement through 1 year.


Journal of Experimental Medicine | 2005

Plasmacytoid predendritic cells initiate psoriasis through interferon-α production

Frank O. Nestle; Curdin Conrad; Adrian Tun-Kyi; Bernhard Homey; Michael Gombert; Onur Boyman; Günter Burg; Yong-Jun Liu; Michel Gilliet

Psoriasis is one of the most common T cell–mediated autoimmune diseases in humans. Although a role for the innate immune system in driving the autoimmune T cell cascade has been proposed, its nature remains elusive. We show that plasmacytoid predendritic cells (PDCs), the natural interferon (IFN)-α–producing cells, infiltrate the skin of psoriatic patients and become activated to produce IFN-α early during disease formation. In a xenograft model of human psoriasis, we demonstrate that blocking IFN-α signaling or inhibiting the ability of PDCs to produce IFN-α prevented the T cell–dependent development of psoriasis. Furthermore, IFN-α reconstitution experiments demonstrated that PDC-derived IFN-α is essential to drive the development of psoriasis in vivo. These findings uncover a novel innate immune pathway for triggering a common human autoimmune disease and suggest that PDCs and PDC-derived IFN-α represent potential early targets for the treatment of psoriasis.


Nature Reviews Immunology | 2009

Skin immune sentinels in health and disease

Frank O. Nestle; Paola Di Meglio; Jian-Zhong Qin; Brian J. Nickoloff

Human skin and its immune cells provide essential protection of the human body from injury and infection. Recent studies reinforce the importance of keratinocytes as sensors of danger through alert systems such as the inflammasome. In addition, newly identified CD103+ dendritic cells are strategically positioned for cross-presentation of skin-tropic pathogens and accumulating data highlight a key role of tissue-resident rather than circulating T cells in skin homeostasis and pathology. This Review focuses on recent progress in dissecting the functional role of skin immune cells in skin disease.


Nature Genetics | 2010

A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1

Amy Strange; Francesca Capon; Chris C. A. Spencer; Jo Knight; Michael E. Weale; Michael H. Allen; Anne Barton; Céline Bellenguez; Judith G.M. Bergboer; Jenefer M. Blackwell; Elvira Bramon; Suzannah Bumpstead; Juan P. Casas; Michael J. Cork; Aiden Corvin; Panos Deloukas; Alexander Dilthey; Audrey Duncanson; Sarah Edkins; Xavier Estivill; Oliver FitzGerald; Colin Freeman; Emiliano Giardina; Emma Gray; Angelika Hofer; Ulrike Hüffmeier; Sarah Hunt; Alan D. Irvine; Janusz Jankowski; Brian J. Kirby

To identify new susceptibility loci for psoriasis, we undertook a genome-wide association study of 594,224 SNPs in 2,622 individuals with psoriasis and 5,667 controls. We identified associations at eight previously unreported genomic loci. Seven loci harbored genes with recognized immune functions (IL28RA, REL, IFIH1, ERAP1, TRAF3IP2, NFKBIA and TYK2). These associations were replicated in 9,079 European samples (six loci with a combined P < 5 × 10−8 and two loci with a combined P < 5 × 10−7). We also report compelling evidence for an interaction between the HLA-C and ERAP1 loci (combined P = 6.95 × 10−6). ERAP1 plays an important role in MHC class I peptide processing. ERAP1 variants only influenced psoriasis susceptibility in individuals carrying the HLA-C risk allele. Our findings implicate pathways that integrate epidermal barrier dysfunction with innate and adaptive immune dysregulation in psoriasis pathogenesis.


Journal of Investigative Dermatology | 2009

The IL-23/Th17 Axis in the Immunopathogenesis of Psoriasis

Antonella Di Cesare; Paola Di Meglio; Frank O. Nestle

Abnormal production of inflammatory mediators is believed to play an important role in the pathogenesis of psoriasis. Emerging data, both in mice and in humans, put the spotlight on a new subset of T helper (Th) cells, in part characterized by their production of IL-17 and accordingly named Th17 cells. Here, we review the development, characterization, and function of human Th17 cells as well as the crucial role of IL-23 in the context of Th17-cell-dependent chronic inflammation in psoriasis. We further discuss recent clinical trials targeting the IL-23/Th17 axis in psoriasis.


Nature Genetics | 2012

Mapping cis- and trans-regulatory effects across multiple tissues in twins

Elin Grundberg; Kerrin S. Small; Åsa K. Hedman; Alexandra C. Nica; Alfonso Buil; Sarah Keildson; Jordana T. Bell; Yang T-P.; Eshwar Meduri; Amy Barrett; James Nisbett; Magdalena Sekowska; Alicja Wilk; Shin S-Y.; Daniel Glass; Mary E. Travers; Josine Min; S. M. Ring; Karen M Ho; Gudmar Thorleifsson; A. P. S. Kong; Unnur Thorsteindottir; Chrysanthi Ainali; Antigone S. Dimas; Neelam Hassanali; Catherine E. Ingle; David Knowles; Maria Krestyaninova; Christopher E. Lowe; P. Di Meglio

Sequence-based variation in gene expression is a key driver of disease risk. Common variants regulating expression in cis have been mapped in many expression quantitative trait locus (eQTL) studies, typically in single tissues from unrelated individuals. Here, we present a comprehensive analysis of gene expression across multiple tissues conducted in a large set of mono- and dizygotic twins that allows systematic dissection of genetic (cis and trans) and non-genetic effects on gene expression. Using identity-by-descent estimates, we show that at least 40% of the total heritable cis effect on expression cannot be accounted for by common cis variants, a finding that reveals the contribution of low-frequency and rare regulatory variants with respect to both transcriptional regulation and complex trait susceptibility. We show that a substantial proportion of gene expression heritability is trans to the structural gene, and we identify several replicating trans variants that act predominantly in a tissue-restricted manner and may regulate the transcription of many genes.


Journal of Clinical Investigation | 2004

Recent insights into the immunopathogenesis of psoriasis provide new therapeutic opportunities

Brian J. Nickoloff; Frank O. Nestle

Chronic and excessive inflammation in skin and joints causes significant morbidity in psoriasis patients. As a prevalent T lymphocyte-mediated disorder, psoriasis, as well as the side effects associated with its treatment, affects patients globally. In this review, recent progress is discussed in the areas of genetics, the immunological synapse, the untangling of the cytokine web and signaling pathways, xenotransplantation models, and the growing use of selectively targeted therapies. Since psoriasis is currently incurable, new management strategies are proposed to replace previous serendipitous approaches. Such strategic transition from serendipity to the use of novel selective agents aimed at defined targets in psoriatic lesions is moving rapidly from research benches to the bedsides of patients with this chronic and debilitating disease.


Journal of Experimental Medicine | 2004

Spontaneous Development of Psoriasis in a New Animal Model Shows an Essential Role for Resident T Cells and Tumor Necrosis Factor-α

Onur Boyman; Hans Peter Hefti; Curdin Conrad; Brian J. Nickoloff; Mark Suter; Frank O. Nestle

Psoriasis is a common T cell–mediated autoimmune disorder where primary onset of skin lesions is followed by chronic relapses. Progress in defining the mechanism for initiation of pathological events has been hampered by the lack of a relevant experimental model in which psoriasis develops spontaneously. We present a new animal model in which skin lesions spontaneously developed when symptomless prepsoriatic human skin was engrafted onto AGR129 mice, deficient in type I and type II interferon receptors and for the recombination activating gene 2. Upon engraftment, resident human T cells in prepsoriatic skin underwent local proliferation. T cell proliferation was crucial for development of a psoriatic phenotype because blocking of T cells led to inhibition of psoriasis development. Tumor necrosis factor-α was a key regulator of local T cell proliferation and subsequent disease development. Our observations highlight the importance of resident T cells in the context of lesional tumor necrosis factor-α production during development of a psoriatic lesion. These findings underline the importance of resident immune cells in psoriasis and will have implications for new therapeutic strategies for psoriasis and other T cell–mediated diseases.


PLOS Genetics | 2011

The architecture of gene regulatory variation across multiple human tissues: the MuTHER study.

Alexandra C. Nica; Leopold Parts; Daniel Glass; James Nisbet; Amy Barrett; Magdalena Sekowska; Mary E. Travers; Simon Potter; Elin Grundberg; Kerrin S. Small; Åsa K. Hedman; Veronique Bataille; Jordana T. Bell; Gabriela Surdulescu; Antigone S. Dimas; Catherine E. Ingle; Frank O. Nestle; Paola Di Meglio; Josine L. Min; Alicja Wilk; Christopher J. Hammond; Neelam Hassanali; Tsun-Po Yang; Stephen B. Montgomery; Steve O'Rahilly; Cecilia M. Lindgren; Krina T. Zondervan; Nicole Soranzo; Inês Barroso; Richard Durbin

While there have been studies exploring regulatory variation in one or more tissues, the complexity of tissue-specificity in multiple primary tissues is not yet well understood. We explore in depth the role of cis-regulatory variation in three human tissues: lymphoblastoid cell lines (LCL), skin, and fat. The samples (156 LCL, 160 skin, 166 fat) were derived simultaneously from a subset of well-phenotyped healthy female twins of the MuTHER resource. We discover an abundance of cis-eQTLs in each tissue similar to previous estimates (858 or 4.7% of genes). In addition, we apply factor analysis (FA) to remove effects of latent variables, thus more than doubling the number of our discoveries (1,822 eQTL genes). The unique study design (Matched Co-Twin Analysis—MCTA) permits immediate replication of eQTLs using co-twins (93%–98%) and validation of the considerable gain in eQTL discovery after FA correction. We highlight the challenges of comparing eQTLs between tissues. After verifying previous significance threshold-based estimates of tissue-specificity, we show their limitations given their dependency on statistical power. We propose that continuous estimates of the proportion of tissue-shared signals and direct comparison of the magnitude of effect on the fold change in expression are essential properties that jointly provide a biologically realistic view of tissue-specificity. Under this framework we demonstrate that 30% of eQTLs are shared among the three tissues studied, while another 29% appear exclusively tissue-specific. However, even among the shared eQTLs, a substantial proportion (10%–20%) have significant differences in the magnitude of fold change between genotypic classes across tissues. Our results underline the need to account for the complexity of eQTL tissue-specificity in an effort to assess consequences of such variants for complex traits.

Collaboration


Dive into the Frank O. Nestle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Burg

University of Zurich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge