Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Feixiong Zhang is active.

Publication


Featured researches published by Feixiong Zhang.


BioDrugs | 2008

Embryonic Stem Cell Transplantation

Feixiong Zhang; Kishore B.S. Pasumarthi

Cardiovascular diseases remain the leading cause of death worldwide, and the burden is equally shared between men and women around the globe. Cardiomyocytes that die in response to disease processes or aging are replaced by scar tissue instead of new muscle cells. Although recent reports suggest an intrinsic capacity for the mammalian myocardium to regenerate via endogenous stem/progenitor cells, the magnitude of such a response appears to be minimal and has yet to be realized fully in cardiovascular patients. Despite the advances in pharmacotherapy and new biomedical technologies, the prognosis for patients diagnosed with end-stage heart failure appears to be grave. While heart transplantation is a viable option, this life-saving intervention suffers from an acute shortage of cardiac organ donors. In view of these existing issues, donor cell transplantation is emerging as a promising strategy to regenerate diseased myocardium. Studies from multiple laboratories have shown that transplantation of donor cells (e.g. fetal cardiomyocytes, skeletal myoblasts, smooth muscle cells, and adult stem cells) can improve the function of diseased hearts over a short period of time (1–4 weeks). While long-term follow-up studies are warranted, it is generally perceived that the beneficial effects of transplanted cells are mainly due to increased angiogenesis or favorable scar remodeling in the engrafted myocardium.Although skeletal myoblasts and bone marrow stem cells hold the highest potential for implementation of autologous therapies, initial results from phase I trials are not promising. In contrast, transplantation of fetal cardiomyocytes has been shown to confer protection against the induction of ventricular tachycardia in experimental myocardial injury models. Furthermore, results from multiple laboratories suggest that fetal cardiomyocytes can couple functionally with host myocytes, stimulate formation of new blood vessels, and improve myocardial function. While it is neither practical nor ethical to test the potential of fetal cardiomyocytes in clinical trials, embryonic stem (ES) cells serve as a novel source for generation of unlimited quantities of cardiomyocytes for myocardial repair. The initial success in the application of ES cells to partially repair and improve myocardial function in experimental models of heart disease has been quite promising. However, multiple hurdles need to be crossed before the potential benefits of ES cells can be translated to the clinic. In this review, we summarize the current knowledge of cardiomyocyte derivation and enrichment from ES-cell cultures and provide a brief survey of factors increasing cardiomyogenic induction in both mouse and human ES cultures. Subsequently, we summarize the current state of research using mouse and human ES cells for the treatment of heart disease in various experimental models. Furthermore, we discuss the challenges that need to be overcome prior to the successful clinical utilization of ES-derived cardiomyocytes for the treatment of end-stage heart disease. While we are optimistic that the researchers in this field will sail across the hurdles, we also suggest that a more cautious approach to the validation of ES cardiomyocytes in experimental models would certainly prevent future disappointments, as seen with skeletal myoblast studies.


Cardiovascular Research | 2014

The FGF-2-triggered protection of cardiac subsarcolemmal mitochondria from calcium overload is mitochondrial connexin 43-dependent

Wattamon Srisakuldee; Zhanna Makazan; Barbara E. Nickel; Feixiong Zhang; James A. Thliveris; Kishore B.S. Pasumarthi; Elissavet Kardami

AIMS Fibroblast growth factor 2 (FGF-2) protects the heart from ischaemia- and reperfusion-induced cell death by a mechanism linked to protein kinase C (PKC)ε-mediated connexin 43 (Cx43) phosphorylation. Cx43 localizes predominantly to gap junctions, but has also been detected at subsarcolemmal (SSM), but not interfibrillar (IFM), mitochondria, where it is considered important for cardioprotection. We have now examined the effect of FGF-2 administration to the heart on resistance to calcium-induced permeability transition (mPTP) of isolated SSM vs. IFM suspensions, in relation to mitochondrial PKCε/Cx43 levels, phosphorylation, and the presence of peptide Gap27, a Cx43 channel blocker. METHODS AND RESULTS FGF-2 perfusion increased resistance to calcium-induced mPTP in SSM and IFM suspensions by 2.9- and 1.7-fold, respectively, compared with their counterparts from vehicle-perfused hearts, assessed spectrophotometrically as cyclosporine A-inhibitable swelling. The salutary effect of FGF-2 was lost in SSM, but not in IFM, in the presence of Gap27. FGF-2 perfusion increased relative levels of PKCε, phospho(p) PKCε, and Tom-20 translocase in SSM and IFM, and of Cx43 in SSM. Phospho-serine (pS) 262- and pS368-Cx43 showed a 30- and 8-fold increase, respectively, in SSM from FGF-2-treated, compared with untreated, hearts. Stimulation of control SSM with phorbol 12-myristate 13-acetate (PMA), a PKC activator, increased both calcium tolerance and mitochondrial Cx43 phosphorylation at S262 and S368. The PMA-induced phosphorylation of mitochondrial Cx43 was prevented by εV1-2, a PKCε-inhibiting peptide. CONCLUSIONS SSM are more responsive than IFM to FGF-2-triggered protection from calcium-induced mPTP, by a mitochondrial Cx43 channel-mediated pathway, associated with mitochondrial Cx43 phosphorylation at PKCε target sites.


Journal of Cellular and Molecular Medicine | 2007

Ultrastructural and immunocharacterization of undifferentiated myocardial cells in the developing mouse heart

Feixiong Zhang; Kishore B.S. Pasumarthi

The recent discovery of several myogenic cardiac progenitor cells in the post‐natal heart suggests that some myocardial cells may remain undifferentiated during embryonic development. In this study, we examined the subcellular characteristics of the embryonic (E) mouse ventricular myocardial cells using transmission electron microscopy (TEM). At the ultrastructural level, we identified three different cell populations within the myocardial layer of the E11.5 heart. These cells were designated as undifferentiated cells (43 ± 6%), moderately differentiated cells (43 ± 2%) and mature cardiomyocytes (14 ± 4%). Undifferentiated cells contained a large nucleus and sparse cytoplasm with no myofibrillar bundles. Moderately differentiated cells contained randomly arranged myofilaments in the cytoplasm. In contrast, mature cardiomyocytes contained well‐developed sarcomere structures. We also confirmed the presence of similar undifferentiated cells albeit at low levels in the E16.5 (∼20%) and E18.5 (∼7%) myocardium. Further we used immunogold labeling technique to test whether these distinct cell populations were also positive for markers such as Nkx2.5, ISL1 and ANF. A preponderance of anti‐Nkx2.5 label was found in the undifferentiated and moderately differentiated cell types. Anti‐ANF label was found only in the cytoplasmic compartment of moderately differentiated and mature myocardial cells. All of the undifferentiated cells were negative for anti‐ANF labeling. We did not find immuno‐gold labeling with ISL1 in any of the three myocardial cell types. Based on these results, we suggest that embryonic myocardial cell differentiation is a gradual process and undifferentiated cells expressing Nkx2.5 in post‐chamber myocardium may represent a progenitor cell population while cells expressing Nkx2.5 and ANF represent differentiating myocytes.


Journal of Cell Science | 2009

A splice variant of cyclin D2 regulates cardiomyocyte cell cycle through a novel protein aggregation pathway

Qian Sun; Feixiong Zhang; Karim Wafa; Timothy Baptist; Kishore B.S. Pasumarthi

The mammalian heart lacks intrinsic ability to replace diseased myocardium with newly divided myocytes. There is scant information on mechanisms regulating cell cycle exit in cardiomyocytes. We cloned a splice variant of cyclin D2 (D2SV) from the mouse heart and found a novel role for this protein in cardiomyocyte cell cycle exit. We report that D2SV is highly expressed in embryonic myocardium compared with the adult heart. Localization studies indicate that D2SV is retained in the endoplasmic reticulum (ER), Golgi and lysosomal compartments and subjected to ER-stress-associated protein aggregation. D2SV aggregation relies on the motor activities of dynein and is blocked by ER stress modulators. The ability of D2SV to sequester other cell cycle proteins provides a mechanistic explanation for its effects on cardiomyocyte cell cycle. We show that D2SV-induced cell cycle exit can be rescued by overexpression of D-type and B-type cyclins. We suggest that protein aggregation may be a major block for cardiomyocyte cell cycle reactivation.


PLOS ONE | 2013

Characterization of Growth Suppressive Functions of a Splice Variant of Cyclin D2

Karim Wafa; Jessica MacLean; Feixiong Zhang; Kishore B.S. Pasumarthi

We have recently cloned a novel splice variant of cyclin D2 termed as cycD2SV. CycD2SV overexpression in several immortalized cell lines led to formation of ubiquitinated protein aggregates accompanied by a significant decrease in cell proliferation. Based on immuno co-localization and ultrastructural analysis experiments, cycD2SV protein aggregates were frequently found in various subcellular compartments such as endosomes, autophagosomes, lysosomes and the microtubule organizing centre. Secondary structure analysis revealed that the amino terminal α-helix in cycD2SV is not tightly packed with the cyclin box suggesting a misfolded conformation compared to other cyclins. Deletion analysis suggests that 1–53 amino acid region of cycD2SV may be required for protein aggregation and 54–136 amino acid region may mediate cell cycle inhibition. Based on co-immunoprecipitation experiments, we have shown that cycD2SV binds to cycD2 as well as CDK4. In addition, gene expression analysis demonstrated an upregulation in GADD45α and dynamin 2 mRNA levels in cycD2SV overexpressing cells. These two proteins are known to play critical roles in the DNA damage response and apoptosis pathways. TUNEL experiments were negative for apoptosis, however, cycD2SV expressing cells were more sensitive to cell death induced by external stressors such as trypsinization. Collectively our results suggest that cycD2SV mediates cell cycle inhibition by sequestering endogenous cell cycle proteins, such as cycD2 and CDK4, and possibly targeting them for ubiquitin mediated protein degradation.


Developmental Dynamics | 2009

Functional Characterization of Cardiac Progenitor Cells and Their Derivatives in the Embryonic Heart Post-Chamber Formation

Nichole M. McMullen; Feixiong Zhang; Adam Hotchkiss; Frédéric Bretzner; Jennifer M. Wilson; Hong Ma; Karim Wafa; Robert M. Brownstone; Kishore B.S. Pasumarthi

There is scant information on the fate of cardiac progenitor cells (CPC) in the embryonic heart after chamber specification. Here we simultaneously tracked three lineage‐specific markers (Nkx2.5, MLC2v, and ANF) and confirmed that CPCs with an Nkx2.5+MLC2v−ANF− phenotype are present in the embryonic (E) day 11.5 mouse ventricular myocardium. We demonstrated that these CPCs could give rise to working cardiomyocytes and conduction system cells. Using a two‐photon imaging analysis, we found that the majority of CPCs are not capable of developing Ca2+ transients in response to β‐adrenergic receptor stimulation. In contrast, Nkx2.5+ cells expressing MLC2v but not ANF are capable of developing functional Ca2+ transients. We showed that Ca2+ transients could be invoked in Nkx2.5+MLC2v+ANF+ cells only upon inhibition of Gi, muscarinic receptors, or nitric oxide synthase (NOS) signaling pathways. Our data suggest that these inhibitory pathways may delay functional specification in a subset of developing ventricular cells. Developmental Dynamics 238:2787–2799, 2009.


Cell Calcium | 2014

The effects of calcium channel blockade on proliferation and differentiation of cardiac progenitor cells.

Adam Hotchkiss; Tiam Feridooni; Feixiong Zhang; Kishore B.S. Pasumarthi

Cardiogenesis depends on a tightly regulated balance between proliferation and differentiation of cardiac progenitor cells (CPCs) and their cardiomyocyte descendants. While exposure of early mouse embryos to Ca(2+) channel antagonists has been associated with abnormal cardiac morphogenesis, less is known about the consequences of Ca(2+) channel blockade on proliferation and differentiation of CPCs at the cellular level. Here we showed that at embryonic day (E) 11.5, the murine ventricles express several L-type and T-type Ca(2+) channel isoforms, and that the dihydropyridine Ca(2+) channel antagonist, nifedipine, blunts isoproterenol induced increases in intracellular Ca(2+). Nifedipine mediated Ca(2+) channel blockade was associated with a reduction in cell cycle activity of E11.5 CPCs and impaired assembly of the cardiomyocyte contractile apparatus. Furthermore, in cell transplantation experiments, systemic administration of nifedipine to adult mice receiving transplanted E11.5 ventricular cells (containing CPCs and cardiomyocytes) was associated with smaller graft sizes compared to vehicle treated control animals. These data suggest that intracellular Ca(2+) is a critical regulator of the balance between CPC proliferation and differentiation and demonstrate that interactions between pharmacological drugs and transplanted cells could have a significant impact on the effectiveness of cell based therapies for myocardial repair.


American Journal of Physiology-cell Physiology | 2015

Divergent cell cycle kinetics of midgestation ventricular cells entail a higher engraftment efficiency after cell transplantation.

Feixiong Zhang; Tiam Feridooni; Adam Hotchkiss; Kishore B.S. Pasumarthi

Cardiac progenitor cells (CPCs) in the primary and secondary heart fields contribute to the formation of all major cell types in the mammalian heart. While some CPCs remain undifferentiated in midgestation and postnatal hearts, very little is known about their proliferation and differentiation potential. In this study, using an Nkx2.5 cell lineage-restricted reporter mouse model, we provide evidence that Nkx2.5(+) CPCs and cardiomyocytes can be readily distinguished from nonmyocyte population using a combination of Nkx2.5 and sarcomeric myosin staining of dispersed ventricular cell preparations. Assessment of cell number and G1/S transit rates during ventricular development indicates that the proliferative capacity of Nkx2.5(+) cell lineage gradually decreases despite a progressive increase in Nkx2.5(+) cell number. Notably, midgestation ventricles (E11.5) contain a larger number of CPCs (∼2-fold) compared with E14.5 ventricles, and the embryonic CPCs retain cardiomyogenic differentiation potential. The proliferation rates are consistently higher in embryonic CPCs compared with myocyte population in both E11.5 and E14.5 ventricles. Results from two independent cell transplantation models revealed that E11.5 ventricular cells with a higher percentage of proliferating CPCs can form larger grafts compared with E14.5 ventricular cells. Furthermore, transplantation of embryonic ventricular cells did not cause any undesirable side effects such as arrhythmias. These data underscore the benefits of donor cell developmental staging in myocardial repair.


American Journal of Physiology-heart and Circulatory Physiology | 2017

Effects of β-adrenergic receptor drugs on embryonic ventricular cell proliferation and differentiation and their impact on donor cell transplantation

Tiam Feridooni; Adam Hotchkiss; Mark Baguma-Nibasheka; Feixiong Zhang; Brittney Allen; Sarita Chinni; Kishore B.S. Pasumarthi

β-Adrenergic receptors (β-ARs) and catecholamines are present in rodents as early as embryonic day (E)10.5. However, it is not known whether β-AR signaling plays any role in the proliferation and differentiation of ventricular cells in the embryonic heart. Here, we characterized expression profiles of β-AR subtypes and established dose-response curves for the nonselective β-AR agonist isoproterenol (ISO) in the developing mouse ventricular cells. Furthermore, we investigated the effects of ISO on cell cycle activity and differentiation of cultured E11.5 ventricular cells. ISO treatment significantly reduced tritiated thymidine incorporation and cell proliferation rates in both cardiac progenitor cell and cardiomyocyte populations. The ISO-mediated effects on DNA synthesis could be abolished by cotreatment of E11.5 cultures with either metoprolol (a β1-AR antagonist) or ICI-118,551 (a β2-AR antagonist). In contrast, ISO-mediated effects on cell proliferation could be abolished only by metoprolol. Furthermore, ISO treatment significantly increased the percentage of differentiated cardiomyocytes compared with that in control cultures. Additional experiments revealed that β-AR stimulation leads to downregulation of Erk and Akt phosphorylation followed by significant decreases in cyclin D1 and cyclin-dependent kinase 4 levels in E11.5 ventricular cells. Consistent with in vitro results, we found that chronic stimulation of recipient mice with ISO after intracardiac cell transplantation significantly decreased graft size, whereas metoprolol protected grafts from the inhibitory effects of systemic catecholamines. Collectively, these results underscore the effects of β-AR signaling in cardiac development as well as graft expansion after cell transplantation.NEW & NOTEWORTHY β-Adrenergic receptor (β-AR) stimulation can decrease the proliferation of embryonic ventricular cells in vitro and reduce the graft size after intracardiac cell transplantation. In contrast, β1-AR antagonists can abrogate the antiproliferative effects mediated by β-AR stimulation and increase graft size. These results highlight potential interactions between adrenergic drugs and cell transplantation.


Journal of Cellular and Molecular Medicine | 2009

Assessment of embryonic myocardial cell differentiation using a dual fluorescent reporter system.

Nichole M. McMullen; Feixiong Zhang; Kishore B.S. Pasumarthi

Recent studies have identified the existence of undifferentiated myocardial cells during early embryonic as well as post‐natal stages of heart development. While primitive cells present in the precardiac mesoderm can differentiate into multiple cell types of the cardiovascular system, the developmental potential of undifferentiated cells identified in the ventricular myocardium after chamber formation is not well characterized. A deeper understanding of mechanisms regulating myocardial cell differentiation will provide further insights into the normal and pathological aspects of heart development. Here, we showed that Nkx2.5 positive and sarcomeric myosin negative cells were predominantly localized in the right ventricular myocardium of CD1 mice at E11.5 stage. We confirmed that myocardial regions negative for saromeric myosin were also devoid of atrial natriuretic factor (ANF). These observations are consistent with our previous study, which showed that ANF expression is restricted to moderately differentiated and mature myocardial cells in E11.5 myocardium of C3H/FeJ mice. Further, we found that the receptor c‐Kit, a marker for early embryonic myocardial progenitor cells, is not expressed in the undifferentiated cells of the E11.5 myocardium. To monitor the differentiation potential of Nkx2.5+/ANF− cells in vitro, we developed a novel double fluorescent reporter system. Subsequently, we confirmed that the majority of Nkx2.5+/ANF− cells expressed mature myocyte markers such as sarcomeric myosin, MLC2V and alpha‐cardiac actin after 48 hrs in culture, albeit at lower levels compared to Nkx2.5+/ANF+ or Nkx2.5−/ANF+ cell populations. Our results suggest that fluorescent reporters under the control of lineage‐specific promoters can be used to study myocardial cell differentiation in response to various exogenous or pharmacological agents.

Collaboration


Dive into the Feixiong Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qian Sun

Dalhousie University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barbara E. Nickel

St. Boniface General Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge