Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tiam Feridooni is active.

Publication


Featured researches published by Tiam Feridooni.


PLOS ONE | 2011

Cardiomyocyte Specific Ablation of p53 Is Not Sufficient to Block Doxorubicin Induced Cardiac Fibrosis and Associated Cytoskeletal Changes

Tiam Feridooni; Adam Hotchkiss; Sarah Remley-Carr; Yumiko Saga; Kishore B.S. Pasumarthi

Doxorubicin (Dox) is an anthracycline used to effectively treat several forms of cancer. Unfortunately, the use of Dox is limited due to its association with cardiovascular complications which are manifested as acute and chronic cardiotoxicity. The pathophysiological mechanism of Dox induced cardiotoxicity appears to involve increased expression of the tumor suppressor protein p53 in cardiomyocytes, followed by cellular apoptosis. It is not known whether downregulation of p53 expression in cardiomyocytes would result in decreased rates of myocardial fibrosis which occurs in response to cardiomyocyte loss. Further, it is not known whether Dox can induce perivascular necrosis and associated fibrosis in the heart. In this study we measured the effects of acute Dox treatment on myocardial and perivascular apoptosis and fibrosis in a conditional knockout (CKO) mouse model system which harbours inactive p53 alleles specifically in cardiomyocytes. CKO mice treated with a single dose of Dox (20 mg/kg), did not display lower levels of myocardial apoptosis or reactive oxygen and nitrogen species (ROS/RNS) compared to control mice with intact p53 alleles. Interestingly, CKO mice also displayed higher levels of interstitial and perivascular fibrosis compared to controls 3 or 7 days after Dox treatment. Additionally, the decrease in levels of the microtubule protein α-tubulin, which occurs in response to Dox treatment, was not prevented in CKO mice. Overall, these results indicate that selective loss of p53 in cardiomyocytes is not sufficient to prevent Dox induced myocardial ROS/RNS generation, apoptosis, interstitial fibrosis and perivascular fibrosis. Further, these results support a role for p53 independent apoptotic pathways leading to Dox induced myocardial damage and highlight the importance of vascular lesions in Dox induced cardiotoxicity.


Canadian Journal of Physiology and Pharmacology | 2012

Role of D-type cyclins in heart development and disease

Adam Hotchkiss; Jessica Robinson; Jessica MacLean; Tiam Feridooni; Karim Wafa; Kishore B.S. Pasumarthi

A defining feature of embryonic cardiomyocytes is their relatively high rates of proliferation. A gradual reduction in proliferative capacity throughout development culminates in permanent cell cycle exit by the vast majority of cardiomyocytes around the perinatal period. Accordingly, the adult heart has severely limited capacity for regeneration in response to injury or disease. The D-type cyclins (cyclin D1, D2, and D3) along with their catalytically active partners, the cyclin dependent kinases, are positive cell cycle regulators that play important roles in regulating proliferation of cardiomyocytes during normal heart development. While expression of D-type cyclins is generally low in the adult heart, expression levels are augmented in association with cardiac hypertrophy, but are uncoupled from myocyte cell division. Accordingly, re-activation of D-type cyclin expression in the adult heart has been implicated in pathophysiological processes via mechanisms distinct from those that drive proliferation during cardiac development. Growth factors and other exogenous agents regulate D-type cyclin production and activity in embryonic and adult cardiomyocytes. Understanding differences in the precise intracellular mediators downstream from these signalling molecules in embryonic versus adult cardiomyocytes could prove valuable for designing strategies to reactivate the cell cycle in cardiomyocytes in the setting of cardiovascular disease in the adult heart.


Pharmaceutics | 2014

Drug-Eluting Nasal Implants: Formulation, Characterization, Clinical Applications and Challenges

Ankit Parikh; Utkarshini Anand; Malachy C. Ugwu; Tiam Feridooni; Emad Massoud; Remigius Uchenna Agu

Chronic inflammation and infection of the nasal sinuses, also referred to as Chronic Rhinosinusitis (CRS), severely affects patients’ quality of life. Adhesions, ostial stenosis, infection and inflammation relapses complicate chronic sinusitis treatment strategies. Drug-eluting stents, packings or implants have been suggested as reasonable alternatives for addressing these concerns. This article reviewed potential drug candidates for nasal implants, formulation methods/optimization and characterization methods. Clinical applications and important considerations were also addressed. Clinically-approved implants (Propel™ implant, the Relieva stratus™ MicroFlow spacer, and the Sinu-Foam™ spacer) for CRS treatment was an important focus. The advantages and limitations, as well as future considerations, challenges and the need for additional research in the field of nasal drug implant development, were discussed.


Cell Calcium | 2014

The effects of calcium channel blockade on proliferation and differentiation of cardiac progenitor cells.

Adam Hotchkiss; Tiam Feridooni; Feixiong Zhang; Kishore B.S. Pasumarthi

Cardiogenesis depends on a tightly regulated balance between proliferation and differentiation of cardiac progenitor cells (CPCs) and their cardiomyocyte descendants. While exposure of early mouse embryos to Ca(2+) channel antagonists has been associated with abnormal cardiac morphogenesis, less is known about the consequences of Ca(2+) channel blockade on proliferation and differentiation of CPCs at the cellular level. Here we showed that at embryonic day (E) 11.5, the murine ventricles express several L-type and T-type Ca(2+) channel isoforms, and that the dihydropyridine Ca(2+) channel antagonist, nifedipine, blunts isoproterenol induced increases in intracellular Ca(2+). Nifedipine mediated Ca(2+) channel blockade was associated with a reduction in cell cycle activity of E11.5 CPCs and impaired assembly of the cardiomyocyte contractile apparatus. Furthermore, in cell transplantation experiments, systemic administration of nifedipine to adult mice receiving transplanted E11.5 ventricular cells (containing CPCs and cardiomyocytes) was associated with smaller graft sizes compared to vehicle treated control animals. These data suggest that intracellular Ca(2+) is a critical regulator of the balance between CPC proliferation and differentiation and demonstrate that interactions between pharmacological drugs and transplanted cells could have a significant impact on the effectiveness of cell based therapies for myocardial repair.


Canadian Journal of Physiology and Pharmacology | 2015

Mechanisms of renal hyporesponsiveness to BNP in heart failure

Emmanuel E. Egom; Tiam Feridooni; Adam Hotchkiss; Peter Kruzliak; Kishore B.S. Pasumarthi

The B-type natriuretic peptide (BNP), a member of the family of vasoactive peptides, is a potent natriuretic, diuretic, and vasodilatory peptide that contributes to blood pressure and volume homeostasis. These attributes make BNP an ideal drug that could aid in diuresing a fluid-overloaded patient who had poor or worsening renal function. Despite the potential benefits of BNP, accumulating evidence suggests that simply increasing the amount of circulating BNP does not necessarily increase natriuresis in patients with heart failure (HF). Moreover, despite high BNP levels, natriuresis falls when HF progresses from a compensated to a decompensated state, suggesting the emergence of renal resistance to BNP. Although likely multifactorial, several mechanisms have been proposed to explain renal hyporesponsiveness in HF, including, but not limited to, decreased renal BNP availability, down-regulation of natriuretic peptide receptors, and altered BNP intracellular signal transduction pathways. Thus, a better understanding of renal hyporesponsiveness in HF is required to devise strategies to develop novel agents and technologies that directly restore renal BNP efficiency. It is hoped that development of these new therapeutic approaches will serve to limit sodium retention in patients with HF, which may ultimately delay the progression to overt HF.


American Journal of Physiology-cell Physiology | 2015

Atrial natriuretic peptide inhibits cell cycle activity of embryonic cardiac progenitor cells via its NPRA receptor signaling axis

Adam Hotchkiss; Tiam Feridooni; Mark Baguma-Nibasheka; Kathleen McNeil; Sarita Chinni; Kishore B.S. Pasumarthi

The biological effects of atrial natriuretic peptide (ANP) are mediated by natriuretic peptide receptors (NPRs), which can either activate guanylyl cyclase (NPRA and NPRB) or inhibit adenylyl cyclase (NPRC) to modulate intracellular cGMP or cAMP, respectively. During cardiac development, ANP serves as an early maker of differentiating atrial and ventricular chamber myocardium. As development proceeds, expression of ANP persists in the atria but declines in the ventricles. Currently, it is not known whether ANP is secreted or the ANP-NPR signaling system plays any active role in the developing ventricles. Thus the primary aims of this study were to 1) examine biological activity of ANP signaling systems in embryonic ventricular myocardium, and 2) determine whether ANP signaling modulates proliferation/differentiation of undifferentiated cardiac progenitor cells (CPCs) and/or cardiomyocytes. Here, we provide evidence that ANP synthesized in embryonic day (E)11.5 ventricular myocytes is actively secreted and processed to its biologically active form. Notably, NPRA and NPRC were detected in E11.5 ventricles and exogenous ANP stimulated production of cGMP in ventricular cell cultures. Furthermore, we showed that exogenous ANP significantly decreased cell number and DNA synthesis of CPCs but not cardiomyocytes and this effect could be reversed by pretreatment with the NPRA receptor-specific inhibitor A71915. ANP treatment also led to a robust increase in nuclear p27 levels in CPCs compared with cardiomyocytes. Collectively, these data provide evidence that in the developing mammalian ventricles ANP plays a local paracrine role in regulating the balance between CPC proliferation and differentiation via NPRA/cGMP-mediated signaling pathways.


Archive | 2012

Novel Mucoadhesive Polymers for Nasal Drug Delivery

Utkarshini Anand; Tiam Feridooni; Remigius Uchenna Agu

The use of nasal cavity as a route of administration of drugs, specifically systemically acting drugs that pose a delivery challenge, have become an area of great interest to the pharmaceutical companies in the past decade. The physiology of the nasal cavity allows for variety of drug delivery possibilities and destinations which include local, systemic, vaccine, and access to the central nervous system (CNS)[1]


American Journal of Physiology-cell Physiology | 2015

Divergent cell cycle kinetics of midgestation ventricular cells entail a higher engraftment efficiency after cell transplantation.

Feixiong Zhang; Tiam Feridooni; Adam Hotchkiss; Kishore B.S. Pasumarthi

Cardiac progenitor cells (CPCs) in the primary and secondary heart fields contribute to the formation of all major cell types in the mammalian heart. While some CPCs remain undifferentiated in midgestation and postnatal hearts, very little is known about their proliferation and differentiation potential. In this study, using an Nkx2.5 cell lineage-restricted reporter mouse model, we provide evidence that Nkx2.5(+) CPCs and cardiomyocytes can be readily distinguished from nonmyocyte population using a combination of Nkx2.5 and sarcomeric myosin staining of dispersed ventricular cell preparations. Assessment of cell number and G1/S transit rates during ventricular development indicates that the proliferative capacity of Nkx2.5(+) cell lineage gradually decreases despite a progressive increase in Nkx2.5(+) cell number. Notably, midgestation ventricles (E11.5) contain a larger number of CPCs (∼2-fold) compared with E14.5 ventricles, and the embryonic CPCs retain cardiomyogenic differentiation potential. The proliferation rates are consistently higher in embryonic CPCs compared with myocyte population in both E11.5 and E14.5 ventricles. Results from two independent cell transplantation models revealed that E11.5 ventricular cells with a higher percentage of proliferating CPCs can form larger grafts compared with E14.5 ventricular cells. Furthermore, transplantation of embryonic ventricular cells did not cause any undesirable side effects such as arrhythmias. These data underscore the benefits of donor cell developmental staging in myocardial repair.


American Journal of Physiology-heart and Circulatory Physiology | 2017

Effects of β-adrenergic receptor drugs on embryonic ventricular cell proliferation and differentiation and their impact on donor cell transplantation

Tiam Feridooni; Adam Hotchkiss; Mark Baguma-Nibasheka; Feixiong Zhang; Brittney Allen; Sarita Chinni; Kishore B.S. Pasumarthi

β-Adrenergic receptors (β-ARs) and catecholamines are present in rodents as early as embryonic day (E)10.5. However, it is not known whether β-AR signaling plays any role in the proliferation and differentiation of ventricular cells in the embryonic heart. Here, we characterized expression profiles of β-AR subtypes and established dose-response curves for the nonselective β-AR agonist isoproterenol (ISO) in the developing mouse ventricular cells. Furthermore, we investigated the effects of ISO on cell cycle activity and differentiation of cultured E11.5 ventricular cells. ISO treatment significantly reduced tritiated thymidine incorporation and cell proliferation rates in both cardiac progenitor cell and cardiomyocyte populations. The ISO-mediated effects on DNA synthesis could be abolished by cotreatment of E11.5 cultures with either metoprolol (a β1-AR antagonist) or ICI-118,551 (a β2-AR antagonist). In contrast, ISO-mediated effects on cell proliferation could be abolished only by metoprolol. Furthermore, ISO treatment significantly increased the percentage of differentiated cardiomyocytes compared with that in control cultures. Additional experiments revealed that β-AR stimulation leads to downregulation of Erk and Akt phosphorylation followed by significant decreases in cyclin D1 and cyclin-dependent kinase 4 levels in E11.5 ventricular cells. Consistent with in vitro results, we found that chronic stimulation of recipient mice with ISO after intracardiac cell transplantation significantly decreased graft size, whereas metoprolol protected grafts from the inhibitory effects of systemic catecholamines. Collectively, these results underscore the effects of β-AR signaling in cardiac development as well as graft expansion after cell transplantation.NEW & NOTEWORTHY β-Adrenergic receptor (β-AR) stimulation can decrease the proliferation of embryonic ventricular cells in vitro and reduce the graft size after intracardiac cell transplantation. In contrast, β1-AR antagonists can abrogate the antiproliferative effects mediated by β-AR stimulation and increase graft size. These results highlight potential interactions between adrenergic drugs and cell transplantation.


Acta Pharmaceutica | 2013

Cytoprotective potential of anti-ischemic drugs against chemotherapy-induced cardiotoxicity in H9c2 myoblast cell line

Tiam Feridooni; Chris Mac Donald; Di Shao; Pollen K.F. Yeung; Remigius U. Agu

Abstract To investigate potential prevention or attenuation of anti- cancer drug induced cardiotoxicity using anti-ischemic drugs, a rat myoblast (H9c2) cell line was used as our in vitro cardiac model. Irinotecan and doxorubicin were found to be cytotoxic for the H9c2 cell line with IC50 of 30.69 ± 6.20 and 20.94 ± 6.05 mmol L-1, respectively. 5-Flurouracil and cladribine were not cytotoxic and thus IC50 could not be calculated. When 100 mmol L-1 doxorubicin was incubated for 72 hours with 50 mmol L-1 diltiazem, 100 mmol L-1 dexrazoxane and 100 mmol L-1 losartan, respectively, there was a 58.7 ± 10.2, 52.2 ± 11.7 and 44.7 ± 5.4 % reduction in cell death. When 200 mmol L-1 irinotecan was incubated for 72 hours with 100 mmol L-1 dexrazoxane, losartan and diltiazem, respectively, a 27.7 ± 6.9, 25.6 ± 5.1, and 19.1 ± 2.3 % reduction in cell death was observed. Our data suggests that losartan and diltiazem were as effective as dexrazoxane in protecting the cells against irinotecan- and doxorubicin-induced cell toxicity. These findings offer potential uses of anti- -ischemic drugs for ablation of cytotoxicity in response to mitochondrial injury, thereby improving patient outcomes and reducing health-care costs.

Collaboration


Dive into the Tiam Feridooni's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Remigius Uchenna Agu

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge