Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Felice Scala is active.

Publication


Featured researches published by Felice Scala.


Phytopathology | 2006

THE MOLECULAR BIOLOGY OF THE INTERACTIONS BETWEEN TRICHODERMA SPP., PHYTOPATHOGENIC FUNGI, AND PLANTS

Sheridan Woo; Felice Scala; M. Ruocco; Matteo Lorito

ABSTRACT Trichoderma-based biofungicides are a reality in agriculture, with more than 50 formulations today available as registered products worldwide. Several strategies have been applied to identify the main genes and compounds involved in this complex, three-way cross-talk between the fungal antagonist, the plant, and microbial pathogens. Proteome and genome analysis have greatly enhanced our ability to conduct holistic and genome-based functional studies. We have identified and determined the role of a variety of novel genes and gene-products, including ABC transporters, enzymes and other proteins that produce or act as novel elicitors of induced resistance, proteins responsible for a gene-for-gene avirulent interaction between Trichoderma spp. and plants, mycoparasitism-related inducers, plant proteins specifically induced by Trichoderma, etc. We have transgenically demonstrated the ability of Trichoderma spp. to transfer heterologous proteins into plant during root colonization, and have used green fluorescent protein and other markers to study the interaction in vivo and in situ between Trichoderma spp. and the fungal pathogen or the plant.


Molecular Plant-microbe Interactions | 1996

Synergistic interaction between cell wall degrading enzymes and membrane affecting compounds

Matteo Lorito; Sheridan Woo; M. D'ambrosio; Gary E. Harman; Christopher K. Hayes; C. P. Kubicek; Felice Scala

A number of cell wall degrading enzymes (CWDEs) and cell membrane affecting compounds (MACs) that alter cell membrane structure or permeability have been assayed in vitro against phytopathogenic fungi and bacteria. Osmotin, gramicidin, valinomycin, phospholipase B, trichorzianine A1, trichorzianine B1, gliotoxin, flusilazole, and miconazole were tested in combination with three endochitinases, four exochitinases, and one glucan 1,3-beta-glucosidase from fungi, bacteria, or plants. Every combination of MAC + CWDE showed a high level of inhibition against Botrytis cinerea and Fusarium oxysporum and the interaction between the two kinds of compounds was of a synergistic nature. Different levels of synergism were obtained among the compound combinations depending upon the antifungal activity of the enzyme. When the enzyme treatment was applied subsequent to the MAC, the level of synergism was lower, indicating that degradation of the cell wall is needed to establish the synergistic interaction. The synergism with MACs was also present when the fungal cell wall was altered in a non-enzymatic manner by including L-sorbose in the growth media. The sensitivity of bacterial strains to the two trichorzianines depended upon the nature of their cell wall and could be synergistically enhanced by partial digestion of the wall. Some of the combinations showed a high level of synergism, suggesting that the interaction between MACs and CWDEs could be involved in biocontrol processes and plant self-defense mechanisms.


Current Genetics | 2006

Study of the three-way interaction between Trichoderma atroviride, plant and fungal pathogens by using a proteomic approach

Roberta Marra; Patrizia Ambrosino; Virginia Carbone; Francesco Vinale; Sheridan L. Woo; Michelina Ruocco; Rosalia Ciliento; Stefania Lanzuise; Simona Ferraioli; Ida Soriente; Sarah Gigante; David Turrà; Vincenzo Fogliano; Felice Scala; Matteo Lorito

The main molecular factors involved in the complex interactions occurring between plants (bean), two different fungal pathogens (Botrytis cinerea, Rhizoctonia solani) and an antagonistic strain of the genus Trichoderma were investigated. Two-dimensional (2-D) electrophoresis was used to analyze separately collected proteomes from each single, two- or three-partner interaction (i.e., plant, pathogenic and antagonistic fungus alone and in all possible combinations). Differential proteins were subjected to mass spectrometry and in silico analysis to search for homologies with known proteins. In the plant proteome, specific pathogenesis-related proteins and other disease-related factors (i.e., potential resistance genes) seem to be associated with the interaction with either one of the two pathogens and/or T. atroviride. This finding is in agreement with the demonstrated ability of Trichoderma spp. to induce systemic resistance against various microbial pathogens. On the other side, many differential proteins obtained from the T. atroviride interaction proteome showed interesting homologies with a fungal hydrophobin, ABC transporters, etc. Virulence factors, like cyclophilins, were up-regulated in the pathogen proteome during the interaction with the plant alone or with the antagonist too. We isolated and confidently identified a large number of protein factors associated to the multi-player interactions examined.


Letters in Applied Microbiology | 2006

Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens

Francesco Vinale; Roberta Marra; Felice Scala; Emilio L. Ghisalberti; Matteo Lorito; Krishnapillai Sivasithamparam

Aims:  Trichoderma harzianum strains T22 and T39 are two micro‐organisms used as active agents in a variety of commercial biopesticides and biofertilizers and widely applied amongst field and greenhouse crops. The production, isolation, biological and chemical characterization of the main secondary metabolites produced by these strains are investigated.


Molecular Plant-microbe Interactions | 1999

Disruption of the ech42 (Endochitinase-Encoding) Gene Affects Biocontrol Activity in Trichoderma harzianum P1

Sheridan Woo; B. Donzelli; Felice Scala; R. Mach; Gary E. Harman; C. P. Kubicek; G. Del Sorbo; Matteo Lorito

The biocontrol strain P1 of Trichoderma harzianum was genetically modified by targeted disruption of the single-copy ech42 gene encoding for the secreted 42-kDa endochitinase (CHIT42). Stable mutants in which ech42 was interrupted, and unable to produce CHIT42, were obtained and characterized. These mutants lacked the ech42 transcript, the protein, and endochitinase activity in culture filtrates, and they were unable to clear a medium containing colloidal chitin. Other chitinolytic and glucanolytic enzymes expressed during mycoparasitism were not affected by the disruption of ech42. The disrupted mutant D11 grew and sporulated similarly to the wild type. In vitro antifungal activity of the ech42 disruptant culture filtrates against Botrytis cinerea and Rhizoctonia solani was reduced about 40%, compared with wild type; antifungal activity was fully restored by adding an equivalent amount of CHIT42 as secreted by P1. The mutant exhibited the same biocontrol effect against Pythium ultimum as strain P1, but t...


New Phytologist | 2011

Phytotoxicity, not nitrogen immobilization, explains plant litter inhibitory effects: evidence from solid‐state 13C NMR spectroscopy

Giuliano Bonanomi; Guido Incerti; Elisa Barile; Manuela Capodilupo; Vincenzo Antignani; Antonio Mingo; Virginia Lanzotti; Felice Scala; Stefano Mazzoleni

Litter decomposition provides nutrients that sustain ecosystem productivity, but litter may also hamper root proliferation. The objectives of this work were to assess the inhibitory effect of litter decomposition on seedling growth and root proliferation; to study the role of nutrient immobilization and phytotoxicity; and to characterize decomposing litter by (13)C NMR spectroscopy. A litter-bag experiment was carried out for 180 d with 16 litter types. Litter inhibitory effects were assessed by two bioassays: seed germination and root proliferation bioassays. Activated carbon (C) and nutrient solutions were used to evaluate the effects of phytotoxic factors and nutrient immobilization. An inhibitory effect was found for all species in the early phase of decomposition, followed by a decrease over time. The addition of activated C to litter removed this inhibition. No evidence of nutrient immobilization was found in the analysis of nitrogen dynamics. NMR revealed consistent chemical changes during decomposition, with a decrease in O-alkyl and an increase in alkyl and methoxyl C. Significant correlations were found among inhibitory effects, the litter decay rate and indices derived from NMR. The results show that it is possible to predict litter inhibitory effects across a range of litter types on the basis of their chemical composition.


Molecular Plant-microbe Interactions | 2002

Pseudomonas lipodepsipeptides and fungal cell wall-degrading enzymes act synergistically in biological control.

Vincenzo Fogliano; Alessandro Ballio; Monica Gallo; Sheridan Woo; Felice Scala; Matteo Lorito

Pseudomonas syringae pv. syringae strain B359 secreted two main lipodepsipeptides (LDPs), syringomycin E (SRE) and syringopeptin 25A (SP25A), together with at least four types of cell wall-degrading enzymes (CWDEs). In antifungal bioassays, the purified toxins SRE and SP25A interacted synergistically with chitinolytic and glucanolytic enzymes purified from the same bacterial strain or from the biocontrol fungus Trichoderma atroviride strain P1. The synergism between LDPs and CWDEs occurred against all seven different fungal species tested and P. syringae itself, with a level dependent on the enzyme used to permeabilize the microbial cell wall. The antifungal activity of SP25A was much more increased by the CWDE action than was that of the smaller SRE, suggesting a stronger antifungal role for SP25A. In vivo biocontrol assays were performed by using P. syringae alone or in combination with T. atroviride, including a Trichoderma endochitinase knock-out mutant in place of the wild type and a chitinase-specific enzyme inhibitor. These experiments clearly indicate that the synergistic interaction LDPs-CWDEs is involved in the antagonistic mechanism of P. syringae, and they support the concept that a more effective disease control is given by the combined action of the two agents.


Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2002

Synergism between fungal enzymes and bacterial antibiotics may enhance biocontrol

Sheri Woo; Vincenzo Fogliano; Felice Scala; Matteo Lorito

The interactions between biocontrol fungi and bacteria may play a key role in the natural process of biocontrol, although the molecular mechanisms involved are still largely unknown. Synergism can occur when different agents are applied together, and cell wall degrading enzymes (CWDEs) produced by fungi can increase the efficacy of bacteria. Pseudomonas spp. produce membrane-disrupting lipodepsipeptides (LDPs) syringotoxins (SP) and syringomycins (SR). SR are considered responsible for the antimicrobial activity, and SP for the phytotoxicity. CWDEs of Trichoderma spp. synergistically increased the toxicity of SP25-A or SRE purified from P. syringae against fungal pathogens. For instance, the fungal enzymes made Botrytis cinerea and other phytopathogenic fungi, normally resistant to SP25-A alone, more susceptible to this antibiotic. Pseudomonas produced CWDEs in culture conditions that allow the synthesis of the LDPs. Purified bacterial enzymes and metabolites were also synergistic against fungal pathogens, although this mixture was less powerful than the combination with the Trichoderma CWDEs. The positive interaction between LDPs and CWDEs may be part of the biocontrol mechanism in some Pseudomonas strains, and co-induction of different antifungal compounds in both biocontrol bacteria and fungi may occur.


Phytochemistry | 2012

Antifungal saponins from bulbs of white onion, Allium cepa L.

Virginia Lanzotti; Adriana Romano; Stefania Lanzuise; Giuliano Bonanomi; Felice Scala

Three saponins, named ceposide A, ceposide B, and ceposide C were isolated from the bulbs of white onion, Allium cepa L. Elucidation of their structure was carried out by comprehensive spectroscopic analyses, including 2D NMR spectroscopy and mass spectrometry, and chemical evidences. The structures of the compounds were identified as (25R)-furost-5(6)-en-1β,3β,22α,26-tetraol 1-O-β-D-xylopyranosyl 26-O-α-D-rhamnoyranosyl-(1→2)-O-β-D-galactopyranoside (ceposide A), (25R)-furost-5(6)-en-1β,3β,22α,26-tetraol 1-O-β-D-xylopyranosyl 26-O-α-D-rhamnoyranosyl-(1→2)-O-β-D-glucopyranoside (ceposide B), and (25R)-furost-5(6)-en-1β,3β,22α,26-tetraol 1-O-β-D-galactopyranosyl 26-O-α-D-rhamnoyranosyl-(1→2)-O-β-D-galactopyranoside (ceposide C). The isolated compounds, alone and in combinations, were evaluated for their antimicrobial activity on ten fungal species. Antifungal activity of all three saponins increased with their concentration and varied with the following rank: ceposide B>ceposide A-ceposide C. We found a significant synergism in the antifungal activity of the three ceposides against Botrytis cinerea and Trichoderma atroviride, because growth of these fungi was strongly inhibited when the three saponins were applied in combination. In contrast, Fusarium oxysporum f. sp. lycopersici, Sclerotium cepivorum and Rhizoctonia solani were very little affected by saponins.


Molecular Plant-microbe Interactions | 2000

Functional Expression of the Gene cu, Encoding the Phytotoxic Hydrophobin Cerato-ulmin, Enables Ophiostoma quercus, a Nonpathogen on Elm, to Cause Symptoms of Dutch Elm Disease

G. Del Sorbo; Felice Scala; G. Parrella; Matteo Lorito; Cecilia Comparini; Michelina Ruocco; Aniello Scala

We studied the involvement of the phytotoxic hydrophobin cerato-ulmin (CU) in pathogenesis and virulence of Dutch elm disease (DED) by expressing its encoding gene (cu) in Ophiostoma quercus, a nonpathogenic species on elm closely related to the DED pathogens O. ulmi and O. novo-ulmi. The production of the toxin was quantitatively determined in culture filtrates and in mycelial extracts of the transformants. Production of CU in vitro was associated with the ability to cause typical DED symptoms, consisting of foliar yellow and wilting and vascular tissue discoloration on a moderately resistant elm genotype. The presence of CU was monitored by enzyme-linked immunosorbent assay in symptomatic leaves of plants inoculated with O. quercus transformants expressing CU and found to be associated with wilt symptoms. In general, the virulence of the cu-expressing transformants, as measured in terms of vascular discoloration and percentage of defoliation, was lower than that of the mildly pathogenic isolate E2 of O. ulmi. However, one transformant (C39) displayed a virulence level intermediate between that of E2 and 182, a highly virulent isolate of O. novo-ulmi. Our results indicate that CU production influences virulence in nonaggressive strains of Ophiostoma fungi.

Collaboration


Dive into the Felice Scala's collaboration.

Top Co-Authors

Avatar

Matteo Lorito

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Giuliano Bonanomi

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gaspare Cesarano

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Del Sorbo

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Francesco Vinale

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Guido Incerti

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Stefania Lanzuise

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Virginia Lanzotti

University of Naples Federico II

View shared research outputs
Researchain Logo
Decentralizing Knowledge