Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Felicia Suska is active.

Publication


Featured researches published by Felicia Suska.


Biomaterials | 2011

The correlation between gene expression of proinflammatory markers and bone formation during osseointegration with titanium implants.

Omar Omar; Maria Lennerås; Felicia Suska; Lena Emanuelsson; Jan Hall; Anders Palmquist; Peter Thomsen

An in vivo interfacial gene expression model combined with biomechanical analysis was used in order to determine the relationship between the molecular events taking place during osseointegration and the biomechanical stability of the implant. Anodically oxidized and machined, threaded titanium implants were characterized topographically, chemically and ultrastructurally. The implants were inserted in rat tibiae and the implant bone torsion stability was evaluated. After measurements, the implants were removed and analyzed with qPCR. Results showed an increase in the breakpoint torque of 140%, 170% and 190%, after 6, 14, and 28 days, respectively, at the oxidized implants as compared to the machined. Gene expression analysis revealed higher expression of runt related transcription factor-2 (Runx2) (after 28 d), osteocalcin (OC) and tartrate resistant acid phosphatase (TRAP) (after 6, 14 and 28 d) and cathepsin K (CATK) (after 6 and 14 d) at the oxidized implants. On the other hand, machined implants were associated with higher expression of tumor necrosis factor-α (TNF-α) (after 6 and 28 d) and interleukin-1β (IL-1β) (after 6, 14 and 28 d) compared to the oxidized implants. In conclusion, the favorable cellular and molecular events at the oxidized implants were in parallel with significantly stronger bone anchorage during osseointegration.


Journal of Biomedical Materials Research Part A | 2009

In vivo gene expression in response to anodically oxidized versus machined titanium implants

Omar Omar; Sara Svensson; Neven Zoric; Maria Lennerås; Felicia Suska; Stina Wigren; Jan Hall; Ulf Nannmark; Peter Thomsen

A quantitative polymerase chain reaction technique (qPCR) in combination with scanning electron microscopy was applied for the evaluation of early gene expression response and cellular reactions close to titanium implants. Anodically oxidized and machined titanium miniscrews were inserted in rat tibiae. After 1, 3, and 6 days the implants were unscrewed and the surrounding bone was retrieved using trephines. Both the implants and bone were analyzed with qPCR. A greater amount of cells, as indicated with higher expression of 18S, was detected on the oxidized surface after 1 and 6 days. Significantly higher osteocalcin (at day 6), alkaline phosphatase (at days 3 and 6), and cathepsin K (at day 3) expression was demonstrated for the oxidized surface. Higher expression of tumor necrosis factor-alpha (at day 1) and interleukin-1beta (at days 1 and 6) was detected on the machined surfaces. SEM revealed a higher amount of mesenchymal-like cells on the oxidized surface. The results show that the rapid recruitment of mesenchymal cells, the rapid triggering of gene expression crucial for bone remodeling and the transient nature of inflammation, constitute biological mechanisms for osseointegration, and high implant stability associated with anodically oxidized implants.


Biomaterials | 2003

IL-1α, IL-1β and TNF-α secretion during in vivo/ex vivo cellular interactions with titanium and copper

Felicia Suska; Marco Esposito; Christina Gretzer; Mia Källtorp; Pentti Tengvall; Peter Thomsen

Titanium (Ti) and copper (Cu) were used to evaluate cytokine secretion around materials with different chemical properties. Ti disks were coated with Cu or left uncoated. The disks were inserted su ...


Nanomedicine: Nanotechnology, Biology and Medicine | 2013

Osseointegration of titanium with an antimicrobial nanostructured noble metal coating.

Sara Svensson; Felicia Suska; Lena Emanuelsson; Anders Palmquist; Birgitta Norlindh; Margarita Trobos; Helen Bäckros; Linda Persson; Gunilla Rydja; Mattias Ohrlander; Benny Lyvén; Jukka Lausmaa; Peter Thomsen

UNLABELLED Nanometer scale surface features on implants and prostheses can potentially be used to enhance osseointegration and may also add further functionalities, such as infection resistance, to the implant. In this study, a nanostructured noble metal coating consisting of palladium, gold and silver, never previously used in bone applications, was applied to machined titanium screws to evaluate osseointegration after 6 and 12 weeks in rabbit tibiae and femurs. Infection resistance was confirmed by in vitro adhesion test. A qualitatively and quantitatively similar in vivo bone response was observed for the coated and uncoated control screws, using histology, histomorphometry and electron microscopy. The bone-implant interface analysis revealed an extensive bone formation and direct bone-implant contact. These results demonstrate that the nanostructured noble metal coating with antimicrobial properties promotes osseointegration and may therefore be used to add extra implant functionality in the form of increased resistance to infection without the use of antibiotics. FROM THE CLINICAL EDITOR The authors of this paper demonstrate that nanostructured noble metal coating of implants and prostheses used in orthopedic procedures promotes osseointegration and may be used to add extra implant functionality in the form of increased resistance to infection without the use of antibiotics.


Acta Biomaterialia | 2016

Long-term osseointegration of 3D printed CoCr constructs with an interconnected open-pore architecture prepared by electron beam melting

Furqan A. Shah; Omar Omar; Felicia Suska; Anders Snis; Aleksandar Matic; Lena Emanuelsson; Birgitta Norlindh; Jukka Lausmaa; Peter Thomsen; Anders Palmquist

UNLABELLED In orthopaedic surgery, cobalt chromium (CoCr) based alloys are used extensively for their high strength and wear properties, but with concerns over stress shielding and bone resorption due to the high stiffness of CoCr. The structural stiffness, principally related to the bulk and the elastic modulus of the material, may be lowered by appropriate design modifications, to reduce the stiffness mismatch between metal/alloy implants and the adjacent bone. Here, 3D printed CoCr and Ti6Al4V implants of similar macro-geometry and interconnected open-pore architecture prepared by electron beam melting (EBM) were evaluated following 26week implantation in adult sheep femora. Despite higher total bone-implant contact for Ti6Al4V (39±4%) than CoCr (27±4%), bone formation patterns were similar, e.g., densification around the implant, and gradual ingrowth into the porous network, with more bone in the outer half (periphery) than the inner half (centre). Raman spectroscopy revealed no major differences in mineral crystallinity, the apatite-to-collagen ratio, or the carbonate-to-phosphate ratio. Energy dispersive X-ray spectroscopy showed similar Ca/P ratio of the interfacial tissue adjacent to both materials. Osteocytes made direct contact with CoCr and Ti6Al4V. While osteocyte density and distribution in the new-formed bone were largely similar for the two alloys, higher osteocyte density was observed at the periphery of the porous network for CoCr, attributable to slower remodelling and a different biomechanical environment. The results demonstrate the possibility to achieve bone ingrowth into open-pore CoCr constructs, and attest to the potential for fabricating customised osseointegrated CoCr implants for load-bearing applications. STATEMENT OF SIGNIFICANCE Although cobalt chromium (CoCr) based alloys are used extensively in orthopaedic surgery, stress shielding due to the high stiffness of CoCr is of concern. To reduce the stiffness mismatch between CoCr and bone, CoCr and Ti6Al4V implants having an interconnected open-pore architecture were prepared by electron beam melting (EBM). After six months of submerged healing in sheep, both alloys showed similar patterns of bone formation, with densification around the implant and gradual ingrowth into the porous network. The molecular and elemental composition of the interfacial tissue was similar for both alloys. Osteocytes made direct contact with both alloys, with similar overall osteocyte density and distribution. The work attests to the potential for achieving osseointegration of EBM manufactured porous CoCr implants.


Journal of Materials Science: Materials in Medicine | 2001

In vivo/ex vivo cellular interactions with titanium and copper

Felicia Suska; Mia Källtorp; Marco Esposito; Christina Gretzer; Pentti Tengvall; Peter Thomsen

Machined, commercially pure titanium (Ti) disks were coated with approximately 400 nm copper (Cu) by physical vapor deposition or left uncoated. The kinetics of inflammatory cell recruitment, distribution and viability was evaluated around Ti, Cu, and in sham sites after 1, 3, 12, 18, 24, and 48 h in a rat subcutaneous (s.c.) model. Further analysis of the cells on implant surfaces was performed by ex vivo incubation of the disks. Ti and Cu stimulated an increased recruitment of inflammatory cells in comparison with sham sites. A markedly higher amount of cells, predominantly polymorpho-nuclear granulocytes (PMN), was detected around Cu after 18 h and onwards. More cells were found at the implant surfaces than in the surrounding exudates after 18 h. The total amount of lactate dehydrogenase (LDH), an indicator of plasma membrane injury, was higher in Cu exudates after 18 h in comparison with Ti and sham. In contrast, no differences in the proportion of dead cells (trypan blue dye uptake) were detected in the exudates. Further, LDH levels were higher around Ti than Cu during the initial 18 h of ex vivo incubation. The results of this study indicate that the early inflammatory process associated with a cytotoxic material in soft tissues is largely attributed to the induction of a markedly strong and prolonged chemotactic response. In contrast, this process is characterized by a higher amount of inflammatory cells around a biocompatible material than in sham sites, but with a transient course and total LDH similar to sham sites.© 2001 Kluwer Academic Publishers


Journal of Biomedical Materials Research Part B | 2010

In vivo evaluation of noble metal coatings.

Felicia Suska; Sara Svensson; Anna Johansson; Lena Emanuelsson; Helen Karlholm; Mattias Ohrlander; Peter Thomsen

A nanotopographic noble metal (Ag, Au, Pd) coating has been applied on commercial urinary catheters and used in more than 80,000 patients, with good clinical results. We have previously evaluated the biocompatibility of different variations of this coating, showing high cellular viability and function in vitro. However, the reasons for good clinical and preclinical behavior are not known. This in vivo study aimed to investigate the soft tissue peri-implant reaction to five coatings with systematically altered noble metal ratios after 1, 3, and 21 days of implantation in rats. The results show that coatings of silver only, or silver with medium amounts of gold and low-medium palladium content were superior to other tested coatings. Such surfaces were during the first days after implantation associated with a decreased recruitment of inflammatory cells to implant close exudates, a lower percentage of neutrophils, higher cell viability, and lower production of monocyte chemoattractant protein-1 (MCP-1), compared to the other coatings and uncoated silicone (PDMS) control. In contrast, the addition of higher concentrations of gold and palladium to silver induced a thicker soft tissue capsule. Coatings with high concentration of palladium induced the thickest fibrouscapsule after 21 days of implantation. The study demonstrates that by varying the noble metal ratio at implant surfaces it is possible to modulate inflammation and fibrosis in soft tissue.


Clinical Implant Dentistry and Related Research | 2013

Acute inflammatory response to laser-induced micro- and nano-sized titanium surface features.

Anders Palmquist; Anna Johansson; Felicia Suska; Rickard Brånemark; Peter Thomsen

BACKGROUND The inflammatory process induced by implant surfaces is an important component of the tissue response, where limited knowledge is available regarding the role of surface topography. With laser ablation, a combined micro- and nanoscale surface modification could be created, which have been shown to enhance bone growth and biomechanical stability in vivo. PURPOSE The aim of this article was to evaluate the early in vivo inflammatory response to laser-modified titanium disks, with machined titanium disks and sham operation sites serving as controls. MATERIALS AND METHODS Circular disks were installed in a subcutaneous rat model for 24 and 72 hours, where the cell number, cell types, and cytokine levels were evaluated. RESULTS The results revealed that significantly fewer inflammatory cells (mononuclear and polymorphonuclear) were attracted to the sites with the laser-modified implants compared with the machined titanium implants. Similar concentrations of pro-inflammatory cytokines (TNF-a and MCP-1), together with slightly higher cell viability, were observed around the laser-modified surface compared with the machined surface. CONCLUSIONS The results in the present study suggest that the combination of surface micro and nano features of the laser-treated surface contributes to the downregulation of early inflammatory events.


Clinical Implant Dentistry and Related Research | 2011

The influence of bone type on the gene expression in normal bone and at the bone-implant interface: experiments in animal model.

Omar Omar; Felicia Suska; Maria Lennerås; Neven Zoric; Sara Svensson; Jan Hall; Lena Emanuelsson; Ulf Nannmark; Peter Thomsen

BACKGROUND Studies on the biological processes in different bone types and the reaction of different bone types to biomaterials are often hindered because of the difficulties in sampling procedures and lack of sensitive techniques. PURPOSE The purpose was to assess the suitability of quantitative polymerase chain reaction (qPCR) for investigation of the biological differences between cortical and trabecular bone types and their responses to biomaterials. MATERIALS AND METHODS Gene expression of selected markers in rat bone samples from different locations was evaluated. Samples were harvested by trephines from the trabecular femoral epiphysis, cortico-trabecular proximal tibial metaphysic, and the cortical distal tibial metaphysis. Gene expression was also evaluated at the surfaces of anodically oxidized implants retrieved from cortical and trabecular sites after 3 days of implantation. mRNA in the bone samples and in the tissue associated with the implant surfaces was extracted and quantified using qPCR. Tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), alkaline phosphatase (ALP), osteocalcin (OC), tartrate-resistant acid phosphatase (TRAP), cathepsin K (CATK), and 18S ribosomal subunits (18S) were analyzed. RESULTS In the bone samples, higher expression of ALP, OC, TRAP, and CATK was found in femoral epiphysis compared to proximal or distal tibial metaphysis, indicating a higher turnover in the trabecular bone. On the other hand, TNF-α and IL-1β showed higher expression in both tibia sites compared with the femur site, which suggests higher inflammatory potential in the cortical bone. In response to the oxidized implants trabecular bone expressed a higher level of IL-1β, whereas the implants in cortical bone were associated with higher expression of ALP and OC. CONCLUSION There are biological differences between cortical and trabecular bone types, both in the normal steady-state condition and in response to biomaterials. Such differences can be characterized and discriminated quantitatively using a sensitive technique such as qPCR.


Journal of Biomaterials Applications | 2014

Enhancement of CRF-PEEK osseointegration by plasma-sprayed hydroxyapatite: A rabbit model

Felicia Suska; Omar Omar; Lena Emanuelsson; Mark Taylor; Philipp Gruner; Amy Kinbrum; Duncan Hunt; Trevor Hunt; Andrew Taylor; Anders Palmquist

Carbon-fibre-reinforced polyether ether ketone (CFR-PEEK) exhibits excellent biomechanical properties as it has an elastic modulus similar to bone. However, CFR-PEEK displays inferior biocompatibility compared with titanium alloy and coating techniques are therefore of interest in order to improve integration. In this paper, the early biological response to CFR-PEEK implants, with and without hydroxyapatite coating, was investigated. Furthermore, a hydroxyapatite-coated titanium alloy reference served as a clinically relevant control. The study was conducted in a rabbit model, both in femur trabecular bone as well as in tibia cortical bone. The results demonstrated that an hydroxyapatite coating significantly enhances the bone response to PEEK implants in vivo. Moreover, in cortical bone, hydroxyapatite-coated PEEK implants induced superior bone response compared with hydroxyapatite-coated Ti ones. These results suggest that hydroxyapatite-coated CFR-PEEK is a suitable material for in vivo implantation.

Collaboration


Dive into the Felicia Suska's collaboration.

Top Co-Authors

Avatar

Peter Thomsen

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Omar Omar

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Sara Svensson

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Johansson

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Marco Esposito

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge