Felipe Murphy-Armando
Tyndall National Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Felipe Murphy-Armando.
Journal of Applied Physics | 2011
Felipe Murphy-Armando; S. Fahy
First-principles electronic structure methods are used to predict the rate of n-type carrier scattering due to phonons in highly-strained Ge. We show that strains achievable in nanoscale structures, where Ge becomes a direct bandgap semiconductor, cause the phonon-limited mobility to be enhanced by hundreds of times that of unstrained Ge, and over a thousand times that of Si. This makes highly tensile strained Ge a most promising material for the construction of channels in CMOS devices, as well as for Si-based photonic applications. Biaxial (001) strain achieves mobility enhancements of 100 to 1000 with strains over 2%. Low temperature mobility can be increased by even larger factors. Second order terms in the deformation potential of the Γ valley are found to be important in this mobility enhancement. Although they are modified by shifts in the conduction band valleys, which are caused by carrier quantum confinement, these mobility enhancements persist in strained nanostructures down to sizes of 20 nm.
ACS Applied Materials & Interfaces | 2015
Michael Clavel; Dzianis Saladukha; Patrick S. Goley; Tomasz J. Ochalski; Felipe Murphy-Armando; Robert J. Bodnar; Mantu K. Hudait
The growth, structural and optical properties, and energy band alignments of tensile-strained germanium (ε-Ge) epilayers heterogeneously integrated on silicon (Si) were demonstrated for the first time. The tunable ε-Ge thin films were achieved using a composite linearly graded InxGa1-xAs/GaAs buffer architecture grown via solid source molecular beam epitaxy. High-resolution X-ray diffraction and micro-Raman spectroscopic analysis confirmed a pseudomorphic ε-Ge epitaxy whereby the degree of strain varied as a function of the In(x)Ga(1-x)As buffer indium alloy composition. Sharp heterointerfaces between each ε-Ge epilayer and the respective In(x)Ga(1-x)As strain template were confirmed by detailed strain analysis using cross-sectional transmission electron microscopy. Low-temperature microphotoluminescence measurements confirmed both direct and indirect bandgap radiative recombination between the Γ and L valleys of Ge to the light-hole valence band, with L-lh bandgaps of 0.68 and 0.65 eV demonstrated for the 0.82 ± 0.06% and 1.11 ± 0.03% strained Ge on Si, respectively. Type-I band alignments and valence band offsets of 0.27 and 0.29 eV for the ε-Ge/In(0.11)Ga(0.89)As (0.82%) and ε-Ge/In(0.17)Ga(0.83)As (1.11%) heterointerfaces, respectively, show promise for ε-Ge carrier confinement in future nanoscale optoelectronic devices. Therefore, the successful heterogeneous integration of tunable tensile-strained Ge on Si paves the way for the design and implementation of novel Ge-based photonic devices on the Si technology platform.
Journal of Applied Physics | 2011
Felipe Murphy-Armando; S. Fahy
First-principles electronic structure methods are used to predict the mobility of n-type carrier scattering in strained SiGe. We consider the effects of strain on the electron-phonon deformation potentials and the alloy scattering parameters. We calculate the electron-phonon matrix elements and fit them up to second order in strain. We find, as expected, that the main effect of strain on mobility comes from the breaking of the degeneracy of the six Δ and L valleys, and the choice of transport direction. The non-linear effects on the electron-phonon coupling of the Δ valley due to shear strain are found to reduce the mobility of Si-like SiGe by 50% per % strain. We find increases in mobility between 2 and 11 times that of unstrained SiGe for certain fixed Ge compositions, which should enhance the thermoelectric figure of merit in the same order, and could be important for piezoresistive applications.
Journal of Physics: Condensed Matter | 2004
A. De Martino; Reinhold Egger; Felipe Murphy-Armando; K. Hallberg
We review the theoretical description of spin-orbit scattering and electron spin resonance in carbon nanotubes. Particular emphasis is laid on the effects of electron-electron interactions. The spin-orbit coupling is derived, and the resulting ESR spectrum is analyzed both using the effective low-energy field theory and numerical studies of finite-size Hubbard chains and two-leg Hubbard ladders. For single-wall tubes, the field theoretical description predicts a double peak spectrum linked to the existence of spin-charge separation. The numerical analysis basically confirms this picture, but also predicts additional features in finite-size samples.
international conference on ultimate integration on silicon | 2011
Felipe Murphy-Armando; S. Fahy
First-principles electronic structure methods are used to predict the rate of n-type carrier scattering due to phonons in highly-strained Ge. We show that strains achievable in nanoscale structures, where Ge becomes a direct band-gap semiconductor, cause the phonon-limited mobility to be enhanced by hundreds of times that of unstrained Ge, and over a thousand times that of Si.
ieee international conference on solid state and integrated circuit technology | 2016
Felipe Murphy-Armando; Chang Liu; Yi Zhao; Ray Duffy
We present a systematic study of the impact of strain on off-state leakage current, using experimental data and ab-initio calculations. We developed new models to account for the impact of strain on band-to-band tunneling and trap-assisted tunneling in silicon. We observe that the strain can dramatically increase the leakage current, depending on the type of tunneling involved. We predict that 1% compressive strain can increase the band-to-band tunneling and Shockley Read Hall leakage currents by over 5 and 3 times, respectively.
Proceedings of SPIE | 2016
Mantu K. Hudait; Michael Clavel; Luke F. Lester; Dzianis Saladukha; Tomasz J. Ochalski; Felipe Murphy-Armando
Tunable tensile-strained germanium (epsilon-Ge) thin films on GaAs and heterogeneously integrated on silicon (Si) have been demonstrated using graded III-V buffer architectures grown by molecular beam epitaxy (MBE). epsilon-Ge epilayers with tunable strain from 0% to 1.95% on GaAs and 0% to 1.11% on Si were realized utilizing MBE. The detailed structural, morphological, band alignment and optical properties of these highly tensile-strained Ge materials were characterized to establish a pathway for wavelength-tunable laser emission from 1.55 μm to 2.1 μm. High-resolution X-ray analysis confirmed pseudomorphic epsilon-Ge epitaxy in which the amount of strain varied linearly as a function of indium alloy composition in the InxGa1-xAs buffer. Cross-sectional transmission electron microscopic analysis demonstrated a sharp heterointerface between the epsilon-Ge and the InxGa1-xAs layer and confirmed the strain state of the epsilon-Ge epilayer. Lowtemperature micro-photoluminescence measurements confirmed both direct and indirect bandgap radiative recombination between the Γ and L valleys of Ge to the light-hole valence band, with L-lh bandgaps of 0.68 eV and 0.65 eV demonstrated for the 0.82% and 1.11% epsilon-Ge on Si, respectively. The highly epsilon-Ge exhibited a direct bandgap, and wavelength-tunable emission was observed for all samples on both GaAs and Si. Successful heterogeneous integration of tunable epsilon-Ge quantum wells on Si paves the way for the implementation of monolithic heterogeneous devices on Si.
Proceedings of SPIE | 2016
Dzianis Saladukha; Tomasz J. Ochalski; Felipe Murphy-Armando; Michael Clavel; Mantu K. Hudait
In this work we study Ge transistor structures grown on silicon substrate. We use photoluminescence to determine the band gap of Ge under tensile strain. The strain is induced by growing Ge on an InGaAs buffer layer with variable In content. The band energy levels are modeled using a 30 band k·p model based on first principles calculations. Photoluminescence measurements show a reasonable correspondence with calculated values of the band energies.
international conference on ultimate integration on silicon | 2012
Felipe Murphy-Armando; S. Fahy
First-principles electronic structure methods are used to predict the piezoresistance of n-type Si<sub>1-x</sub>Ge<sub>x</sub> at various alloy compositions and strain configurations. We report very large gauge factors, G = dρ/dϵ/ρ, where ρ is resistivity and ϵ is strain: for compositions x ≃ 0.90 under uniaxial strain in the 〈111〉 direction, G >; 500. These gauge factors are over three times larger than the best values for single crystalline bulk Si. This large change in resistance due to strain is explained by the change in the occupancy of the higher-conductance L valley relative to the lower-conductance Δ valley, coupled to a change in inter-valley alloy and phonon scattering.
international conference on ultimate integration on silicon | 2011
Martin P Vaughan; Felipe Murphy-Armando; S. Fahy
A method is developed to obtain the alloy scattering coefficients from first-principles band structure calculations. It is found that the scattering matrix can be decomposed into two additive components: a chemical part due to atomic substitution and a part due to ionic relaxation. The method is then applied to find the intra-and inter-valley electron scattering rates for substitutional carbon in silicon. Intravalley scattering is found to be the dominant process.