Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Felipe T. Salles is active.

Publication


Featured researches published by Felipe T. Salles.


The Journal of Neuroscience | 2007

Stepwise Morphological and Functional Maturation of Mechanotransduction in Rat Outer Hair Cells

Jessica Waguespack; Felipe T. Salles; Bechara Kachar; Anthony J. Ricci

Inner ear mechanosensory hair cells convert mechanical vibrations into electrical signals via the coordinated interaction of multiple proteins precisely positioned within the sensory hair bundle. Present work identifies the time course for the acquisition and maturation of mechanoelectric transduction (MET) in rat cochlea outer hair cells maintained in organotypic cultures. A spatiotemporal developmental progression was observed morphologically and functionally with basal cochlea maturation preceding apical cochlea by 2–3 d in all measured properties. The fraction of mechanosensitive cells increased rapidly, with a midpoint at postnatal day 0 for basal cells, and correlated with myosin IIIa immunoreactivity. MET current magnitude increased over several days. Adaptation lagged the onset of transduction by a day and matured more slowly, overlapping but preceding the rise in myosin Ic immunoreactivity. Less than ∼25% of myosin Ic expression was required for the mature adaptation response, suggesting multiple roles for this protein in hair bundle function. Directional sensitivity, lacking in immature responses, developed rapidly and correlated with the pruning of radial links and an increase in tenting of stereociliary tips. Morphological and electrophysiological data support a hypothesis in which key elements arrive independently at the site of MET, with a mature response occurring as membrane tension increases, likely by the increased tensioning of the tip link with the onset of adaptation. Organotypic cultures developed normal, tonotopically specific, MET response properties, suggesting that maturation was not influenced significantly by external factors such as innervation, endolymph, normal mechanical stimulation, or an intact organ of Corti.


The Journal of Neuroscience | 2006

A New Compartment at Stereocilia Tips Defined by Spatial and Temporal Patterns of Myosin IIIa Expression

Mark Schneider; Andréa C. Dosé; Felipe T. Salles; Weise Chang; Floyd L. Erickson; Beth Burnside; Bechara Kachar

Class III myosins are motor proteins that contain an N-terminal kinase domain and a C-terminal actin-binding domain. We show that myosin IIIa, which has been implicated in nonsyndromic progressive hearing loss, is localized at stereocilia tips. Myosin IIIa progressively accumulates during stereocilia maturation in a thimble-like pattern around the stereocilia tip, distinct from the cap-like localization of myosin XVa and the shaft localization of myosin Ic. Overexpression of deletion mutants for functional domains of green fluorescent protein (GFP)–myosin IIIa shows that the motor domain, but not the actin-binding tail domain, is required for stereocilia tip localization. Deletion of the kinase domain produces stereocilia elongation and bulging of the stereocilia tips. The thimble-like localization and the influence myosin IIIa has on stereocilia shape reveal a previously unrecognized molecular compartment at the distal end of stereocilia, the site of actin polymerization as well as operation of the mechanoelectrical transduction apparatus.


Nature Cell Biology | 2009

Myosin IIIa boosts elongation of stereocilia by transporting espin 1 to the plus ends of actin filaments

Felipe T. Salles; Raymond C. Merritt; Uri Manor; Gerard W. Dougherty; Aurea D. Sousa; Judy E. Moore; Christopher M. Yengo; Andréa C. Dosé; Bechara Kachar

Two proteins implicated in inherited deafness, myosin IIIa, a plus-end-directed motor, and espin, an actin-bundling protein containing the actin-monomer-binding motif WH2, have been shown to influence the length of mechanosensory stereocilia. Here we report that espin 1, an ankyrin repeat-containing isoform of espin, colocalizes with myosin IIIa at stereocilia tips and interacts with a unique conserved domain of myosin IIIa. We show that combined overexpression of these proteins causes greater elongation of stereocilia, compared with overexpression of either myosin IIIa alone or espin 1 alone. When these two proteins were co-expressed in the fibroblast-like COS-7 cell line they induced a tenfold elongation of filopodia. This extraordinary filopodia elongation results from the transport of espin 1 to the plus ends of F-actin by myosin IIIa and depends on espin 1 WH2 activity. This study provides the basis for understanding the role of myosin IIIa and espin 1 in regulating stereocilia length, and presents a physiological example where myosins can boost elongation of actin protrusions by transporting actin regulatory factors to the plus ends of actin filaments.


PLOS ONE | 2013

Mechanisms of hearing loss after blast injury to the ear.

Sung-Il Cho; Simon S. Gao; Anping Xia; Rosalie Wang; Felipe T. Salles; Patrick D. Raphael; Homer Abaya; Jacqueline Wachtel; Jongmin Baek; David E. Jacobs; Matthew N. Rasband; John S. Oghalai

Given the frequent use of improvised explosive devices (IEDs) around the world, the study of traumatic blast injuries is of increasing interest. The ear is the most common organ affected by blast injury because it is the body’s most sensitive pressure transducer. We fabricated a blast chamber to re-create blast profiles similar to that of IEDs and used it to develop a reproducible mouse model to study blast-induced hearing loss. The tympanic membrane was perforated in all mice after blast exposure and found to heal spontaneously. Micro-computed tomography demonstrated no evidence for middle ear or otic capsule injuries; however, the healed tympanic membrane was thickened. Auditory brainstem response and distortion product otoacoustic emission threshold shifts were found to be correlated with blast intensity. As well, these threshold shifts were larger than those found in control mice that underwent surgical perforation of their tympanic membranes, indicating cochlear trauma. Histological studies one week and three months after the blast demonstrated no disruption or damage to the intra-cochlear membranes. However, there was loss of outer hair cells (OHCs) within the basal turn of the cochlea and decreased spiral ganglion neurons (SGNs) and afferent nerve synapses. Using our mouse model that recapitulates human IED exposure, our results identify that the mechanisms underlying blast-induced hearing loss does not include gross membranous rupture as is commonly believed. Instead, there is both OHC and SGN loss that produce auditory dysfunction.


Nature Communications | 2011

Integrating the biophysical and molecular mechanisms of auditory hair cell mechanotransduction

Anthony W. Peng; Felipe T. Salles; Bifeng Pan; Anthony J. Ricci

Mechanosensation is a primitive and somewhat ubiquitous sense. At the inner ear, sensory hair cells are refined to enhance sensitivity, dynamic range and frequency selectivity. Thirty years ago, mechanisms of mechanotransduction and adaptation were well accounted for by simple mechanical models that incorporated physiological and morphological properties of hair cells. Molecular and genetic tools, coupled with new optical techniques, are now identifying and localizing specific components of the mechanotransduction machinery. These new findings challenge long-standing theories, and require modification of old and development of new models. Future advances require the integration of molecular and physiological data to causally test these new hypotheses.


Current Biology | 2012

Myosin IIIB Uses an Actin-Binding Motif in Its Espin-1 Cargo to Reach the Tips of Actin Protrusions

Raymond C. Merritt; Uri Manor; Felipe T. Salles; M'hamed Grati; Andréa C. Dosé; William C. Unrath; Omar A. Quintero; Christopher M. Yengo; Bechara Kachar

Myosin IIIA (MYO3A) targets actin protrusion tips using a motility mechanism dependent on both motor and tail actin-binding activity [1]. We show that myosin IIIB (MYO3B) lacks tail actin-binding activity and is unable to target COS7 cell filopodia tips, yet is somehow able to target stereocilia tips. Strikingly, when MYO3B is coexpressed with espin-1 (ESPN1), a MYO3A cargo protein endogenously expressed in stereocilia [2], MYO3B targets and carries ESPN1 to COS7 filopodia tips. We show that this tip localization is lost when we remove the ESPN1 C terminus actin-binding site. We also demonstrate that, like MYO3A [2], MYO3B can elongate filopodia by transporting ESPN1 to the polymerizing end of actin filaments. The mutual dependence of MYO3B and ESPN1 for tip localization reveals a novel mechanism for the cell to regulate myosin tip localization via a reciprocal relationship with cargo that directly participates in actin binding for motility. Our results are consistent with a novel form of motility for class III myosins that requires both motor and tail domain actin-binding activity and show that the actin-binding tail can be replaced by actin-binding cargo. This study also provides a framework to better understand the late-onset hearing loss phenotype in patients with MYO3A mutations.


Journal of Biological Chemistry | 2010

Intermolecular Autophosphorylation Regulates Myosin IIIa Activity and Localization in Parallel Actin Bundles

Omar A. Quintero; Judy E. Moore; William C. Unrath; Uri Manor; Felipe T. Salles; M'hamed Grati; Bechara Kachar; Christopher M. Yengo

Myosin IIIa (Myo3A) transports cargo to the distal end of actin protrusions and contains a kinase domain that is thought to autoregulate its activity. Because Myo3A tends to cluster at the tips of actin protrusions, we investigated whether intermolecular phosphorylation could regulate Myo3A biochemical activity, cellular localization, and cellular function. Inactivation of Myo3A 2IQ kinase domain with the point mutation K50R did not alter maximal ATPase activity, whereas phosphorylation of Myo3A 2IQ resulted in reduced maximal ATPase activity and actin affinity. The rate and degree of Myo3A 2IQ autophosphorylation was unchanged by the presence of actin but was found to be dependent upon Myo3A 2IQ concentration within the range of 0.1 to 1.2 μm, indicating intermolecular autophosphorylation. In cultured cells, we observed that the filopodial tip localization of Myo3A lacking the kinase domain decreased when co-expressed with kinase-active, full-length Myo3A. The cellular consequence of reduced Myo3A tip localization was decreased filopodial density along the cell periphery, identifying a novel cellular function for Myo3A in mediating the formation and stability of actin-based protrusions. Our results suggest that Myo3A motor activity is regulated through a mechanism involving concentration-dependent autophosphorylation. We suggest that this regulatory mechanism plays an essential role in mediating the transport and actin bundle formation/stability functions of Myo3A.


The Journal of Neuroscience | 2009

The Septate Junction Protein Caspr Is Required for Structural Support and Retention of KCNQ4 at Calyceal Synapses of Vestibular Hair Cells

Aurea D. Sousa; Leonardo R. Andrade; Felipe T. Salles; Anilkumar M. Pillai; Elizabeth D. Buttermore; Manzoor A. Bhat; Bechara Kachar

The afferent innervation contacting the type I hair cells of the vestibular sensory epithelia form distinct calyceal synapses. The apposed presynaptic and postsynaptic membranes at this large area of synaptic contact are kept at a remarkably regular distance. Here, we show by freeze-fracture electron microscopy that a patterned alignment of proteins at the calyceal membrane resembles a type of intercellular junction that is rare in vertebrates, the septate junction (SJ). We found that a core molecular component of SJs, Caspr, colocalizes with the K+ channel KCNQ4 at the postsynaptic membranes of these calyceal synapses. Immunolabeling and ultrastructural analyses of Caspr knock-out mice reveal that, in the absence of Caspr, the separation between the membranes of the hair cells and the afferent neurons is conspicuously irregular and often increased by an order of magnitude. In these mutants, KCNQ4 fails to cluster at the postsynaptic membrane and appears diffused along the entire calyceal membrane. Our results indicate that a septate-like junction provides structural support to calyceal synaptic contact with the vestibular hair cell and that Caspr is required for the recruitment or retention of KCNQ4 at these synapses.


Cytoskeleton | 2014

CLIC5 stabilizes membrane‐actin filament linkages at the base of hair cell stereocilia in a molecular complex with radixin, taperin, and myosin VI

Felipe T. Salles; Leonardo R. Andrade; Soichi Tanda; M'hamed Grati; Kathleen Lynn Plona; Leona H. Gagnon; Kenneth R. Johnson; Bechara Kachar; Mark Berryman

Chloride intracellular channel 5 protein (CLIC5) was originally isolated from microvilli in complex with actin binding proteins including ezrin, a member of the Ezrin‐Radixin‐Moesin (ERM) family of membrane‐cytoskeletal linkers. CLIC5 concentrates at the base of hair cell stereocilia and is required for normal hearing and balance in mice, but its functional significance is poorly understood. This study investigated the role of CLIC5 in postnatal development and maintenance of hair bundles. Confocal and scanning electron microscopy of CLIC5‐deficient jitterbug (jbg) mice revealed progressive fusion of stereocilia as early as postnatal day 10. Radixin (RDX), protein tyrosine phosphatase receptor Q (PTPRQ), and taperin (TPRN), deafness‐associated proteins that also concentrate at the base of stereocilia, were mislocalized in fused stereocilia of jbg mice. TPRQ and RDX were dispersed even prior to stereocilia fusion. Biochemical assays showed interaction of CLIC5 with ERM proteins, TPRN, and possibly myosin VI (MYO6). In addition, CLIC5 and RDX failed to localize normally in fused stereocilia of MYO6 mutant mice. Based on these findings, we propose a model in which these proteins work together as a complex to stabilize linkages between the plasma membrane and subjacent actin cytoskeleton at the base of stereocilia. Published 2013‐Wiley Periodicals, Inc. This article is a US government work and, as such, is in the public domain in the United States of America.


Nature Communications | 2016

Stereocilia-staircase spacing is influenced by myosin III motors and their cargos espin-1 and espin-like

Seham Ebrahim; Matthew R. Avenarius; M'hamed Grati; Jocelyn F. Krey; Alanna M. Windsor; Aurea D. Sousa; Angela Ballesteros; Runjia Cui; Bryan A. Millis; Felipe T. Salles; Michelle A. Baird; Michael W. Davidson; Sherri M. Jones; Dongseok Choi; Lijin Dong; Manmeet H. Raval; Christopher M. Yengo; Peter G. Barr-Gillespie; Bechara Kachar

Hair cells tightly control the dimensions of their stereocilia, which are actin-rich protrusions with graded heights that mediate mechanotransduction in the inner ear. Two members of the myosin-III family, MYO3A and MYO3B, are thought to regulate stereocilia length by transporting cargos that control actin polymerization at stereocilia tips. We show that eliminating espin-1 (ESPN-1), an isoform of ESPN and a myosin-III cargo, dramatically alters the slope of the stereocilia staircase in a subset of hair cells. Furthermore, we show that espin-like (ESPNL), primarily present in developing stereocilia, is also a myosin-III cargo and is essential for normal hearing. ESPN-1 and ESPNL each bind MYO3A and MYO3B, but differentially influence how the two motors function. Consequently, functional properties of different motor-cargo combinations differentially affect molecular transport and the length of actin protrusions. This mechanism is used by hair cells to establish the required range of stereocilia lengths within a single cell.

Collaboration


Dive into the Felipe T. Salles's collaboration.

Top Co-Authors

Avatar

Bechara Kachar

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Christopher M. Yengo

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aurea D. Sousa

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Uri Manor

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Alanna M. Windsor

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Angela Ballesteros

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge