Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M'hamed Grati is active.

Publication


Featured researches published by M'hamed Grati.


Current Biology | 2011

Regulation of stereocilia length by myosin XVa and whirlin depends on the actin-regulatory protein Eps8.

Uri Manor; Andrea Disanza; M'hamed Grati; Leonardo R. Andrade; Harrison W. Lin; Pier Paolo Di Fiore; Giorgio Scita; Bechara Kachar

Myosin XVa (MyoXVa) and its cargo whirlin are implicated in deafness and vestibular dysfunction and have been shown to localize at stereocilia tips and to be essential for the elongation of these actin protrusions [1-4]. Given that whirlin has no known actin-regulatory activity, it remains unclear how these proteins work together to influence stereocilia length. Here we show that the actin-regulatory protein Eps8 [5] interacts with MyoXVa and that mice lacking Eps8 show short stereocilia compared to MyoXVa- and whirlin-deficient mice. We show that Eps8 fails to accumulate at the tips of stereocilia in the absence of MyoXVa, that overexpression of MyoXVa results in both elongation of stereocilia and increased accumulation of Eps8 at stereocilia tips, and that the exogenous expression of MyoXVa in MyoXVa-deficient hair cells rescues Eps8 tip localization. We find that Eps8 also interacts with whirlin and that the expression of both Eps8 and MyoXVa at stereocilia tips is reduced in whirlin-deficient mice. We conclude that MyoXVa, whirlin, and Eps8 are integral components of the stereocilia tip complex, where Eps8 is a central actin-regulatory element for elongation of the stereocilia actin core.


Orphanet Journal of Rare Diseases | 2011

Complete exon sequencing of all known Usher syndrome genes greatly improves molecular diagnosis

Crystel Bonnet; M'hamed Grati; Sandrine Marlin; Jacqueline Levilliers; Jean-Pierre Hardelin; Marine Parodi; Magali Niasme-Grare; Diana Zelenika; Marc Delepine; Delphine Feldmann; Laurence Jonard; Aziz El-Amraoui; Dominique Weil; Bruno Delobel; Christophe Vincent; Hélène Dollfus; Marie-Madeleine Eliot; Albert David; Catherine Calais; Jacqueline Vigneron; Bettina Montaut-Verient; Dominique Bonneau; Jacques Dubin; Christel Thauvin; Alain Duvillard; Christine Francannet; Thierry Mom; Didier Lacombe; Françoise Duriez; Valérie Drouin-Garraud

BackgroundUsher syndrome (USH) combines sensorineural deafness with blindness. It is inherited in an autosomal recessive mode. Early diagnosis is critical for adapted educational and patient management choices, and for genetic counseling. To date, nine causative genes have been identified for the three clinical subtypes (USH1, USH2 and USH3). Current diagnostic strategies make use of a genotyping microarray that is based on the previously reported mutations. The purpose of this study was to design a more accurate molecular diagnosis tool.MethodsWe sequenced the 366 coding exons and flanking regions of the nine known USH genes, in 54 USH patients (27 USH1, 21 USH2 and 6 USH3).ResultsBiallelic mutations were detected in 39 patients (72%) and monoallelic mutations in an additional 10 patients (18.5%). In addition to biallelic mutations in one of the USH genes, presumably pathogenic mutations in another USH gene were detected in seven patients (13%), and another patient carried monoallelic mutations in three different USH genes. Notably, none of the USH3 patients carried detectable mutations in the only known USH3 gene, whereas they all carried mutations in USH2 genes. Most importantly, the currently used microarray would have detected only 30 of the 81 different mutations that we found, of which 39 (48%) were novel.ConclusionsBased on these results, complete exon sequencing of the currently known USH genes stands as a definite improvement for molecular diagnosis of this disease, which is of utmost importance in the perspective of gene therapy.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Mutation of the ATP-gated P2X2 receptor leads to progressive hearing loss and increased susceptibility to noise

Denise Yan; Yan Zhu; Tom Walsh; Dinghua Xie; Huijun Yuan; Asli Sirmaci; Taro Fujikawa; Ann Chi Yan Wong; Tze L. Loh; Li Lin Du; M'hamed Grati; Srdjan M. Vlajkovic; Susan H. Blanton; Allen F. Ryan; Zheng-Yi Chen; Peter R. Thorne; Bechara Kachar; Mustafa Tekin; Hong Bo Zhao; Gary D. Housley; Mary Claire King; Xue Zhong Liu

Age-related hearing loss and noise-induced hearing loss are major causes of human morbidity. Here we used genetics and functional studies to show that a shared cause of these disorders may be loss of function of the ATP-gated P2X2 receptor (ligand-gated ion channel, purinergic receptor 2) that is expressed in sensory and supporting cells of the cochlea. Genomic analysis of dominantly inherited, progressive sensorineural hearing loss DFNA41 in a six-generation kindred revealed a rare heterozygous allele, P2RX2 c.178G > T (p.V60L), at chr12:133,196,029, which cosegregated with fully penetrant hearing loss in the index family, and also appeared in a second family with the same phenotype. The mutation was absent from more than 7,000 controls. P2RX2 p.V60L abolishes two hallmark features of P2X2 receptors: ATP-evoked inward current response and ATP-stimulated macropore permeability, measured as loss of ATP-activated FM1-43 fluorescence labeling. Coexpression of mutant and WT P2X2 receptor subunits significantly reduced ATP-activated membrane permeability. P2RX2-null mice developed severe progressive hearing loss, and their early exposure to continuous moderate noise led to high-frequency hearing loss as young adults. Similarly, among family members heterozygous for P2RX2 p.V60L, noise exposure exacerbated high-frequency hearing loss in young adulthood. Our results suggest that P2X2 function is required for life-long normal hearing and for protection from exposure to noise.


The Journal of Neuroscience | 2006

Rapid Turnover of Stereocilia Membrane Proteins: Evidence from the Trafficking and Mobility of Plasma Membrane Ca2+-ATPase 2

M'hamed Grati; Mark Schneider; Karen Lipkow; Emanuel E. Strehler; Robert J. Wenthold; Bechara Kachar

We studied the spatial distribution, mobility, and trafficking of plasma membrane Ca2+ATPase-2 (PMCA2), a protein enriched in the hair cell apical membrane and essential for hair cell function. Using immunofluorescence, we determined that PMCA2 is enriched in the stereocilia and present at a relatively low concentration in the kinocilium and in the remaining apical membrane. Using an antibody to the extracellular domain of PMCA2 as a probe, we observed that PMCA2 diffuses laterally from the stereocilia membrane and is internalized at the apical cell border maintaining an estimated half-life of residency in the stereocilia of ∼5–7 h. A computer simulation of our data indicates that PMCA2 has an estimated global diffusion coefficient of 0.01–0.005 μm2/s. Using a green fluorescent protein tag, we observed that PMCA2 is rapidly delivered to the apical cell border from where it diffuses to the entire stereocilia surface. Fluorescence recovery after photobleaching experiments show that ∼60% of PMCA2 in the stereocilia exhibit high mobility with a diffusion coefficient of 0.1–0.2 μm2/s, whereas the remaining pool represents a relatively immobile fraction. These results suggest that PMCA2 molecules maintain transient interactions with other components of the stereocilia, and the mobile pool of PMCA2 mediates the exchange between the stereocilia and the removal and delivery sites at the periphery of the apical cell surface. This rapid turnover of a major stereocilia membrane protein matches the previously described rapid turnover of proteins of the stereocilia actin core, further demonstrating that these organelles undergo rapid continuous renewal.


Journal of Cellular Physiology | 2016

Intricate functions of matrix metalloproteinases in physiological and pathological conditions

Rahul Mittal; Amit P. Patel; Luca H. Debs; Desiree Nguyen; Kunal Patel; M'hamed Grati; Jeenu Mittal; Denise Yan; Prem P. Chapagain; Xue Zhong Liu

Matrix metalloproteinases (MMPs) are a diverse group of proteolytic enzymes and play an important role in the degradation and remodeling of the extracellular matrix (ECM). In normal physiological conditions, MMPs are usually minimally expressed. Despite their low expression, MMPs have been implicated in many cellular processes ranging from embryological development to apoptosis. The activity of MMPs is controlled at three different stages: (1) transcription; (2) zymogen activation; and (3) inhibition of active forms by tissue inhibitor metalloproteinases (TIMPs). They can collectively degrade any component of ECM and basement membrane, and their excessive activity has been linked to numerous pathologies mainly including, but not limited to, tumor invasion and metastasis. The lack of information about several MMPs and the steady stream of new discoveries suggest that there is much more to be studied in this field. In particular, there is a need for controlling their expression in disease states. Various studies over the past 30 years have found that each MMP has a specific mode of activation, action, and inhibition. Drugs specifically targeting individual MMPs could revolutionize the treatment of a great number of health conditions and tremendously reduce their burden. In this review article, we have summarized the recent advances in understanding the role of MMPs in physiological and pathological conditions. J. Cell. Physiol. 231: 2599–2621, 2016.


Human Molecular Genetics | 2015

A missense mutation in DCDC2 causes human recessive deafness DFNB66, likely by interfering with sensory hair cell and supporting cell cilia length regulation

M'hamed Grati; Imen Chakchouk; Qi Ma; Mariem Bensaid; Alexandra DeSmidt; Nouha Turki; Denise Yan; Aissette Baanannou; Rahul Mittal; Nabil Driss; Susan H. Blanton; Amjad Farooq; Zhongmin Lu; Xue Zhong Liu; Saber Masmoudi

Hearing loss is the most common sensory deficit in humans. We show that a point mutation in DCDC2 (DCDC2a), a member of doublecortin domain-containing protein superfamily, causes non-syndromic recessive deafness DFNB66 in a Tunisian family. Using immunofluorescence on rat inner ear neuroepithelia, DCDC2a was found to localize to the kinocilia of sensory hair cells and the primary cilia of nonsensory supporting cells. DCDC2a fluorescence is distributed along the length of the kinocilium with increased density toward the tip. DCDC2a-GFP overexpression in non-polarized COS7 cells induces the formation of long microtubule-based cytosolic cables suggesting a role in microtubule formation and stabilization. Deafness mutant DCDC2a expression in hair cells and supporting cells causes cilium structural defects, such as cilium branching, and up to a 3-fold increase in length ratios. In zebrafish, the ortholog dcdc2b was found to be essential for hair cell development, survival and function. Our results reveal DCDC2a to be a deafness gene and a player in hair cell kinocilia and supporting cell primary cilia length regulation likely via its role in microtubule formation and stabilization.


The Journal of Neuroscience | 2012

Localization of PDZD7 to the stereocilia ankle-link associates this scaffolding protein with the Usher syndrome protein network.

M'hamed Grati; Jung Bum Shin; Michael D. Weston; James A. Green; Manzoor A. Bhat; Peter G. Gillespie; Bechara Kachar

Usher syndrome is the leading cause of genetic deaf–blindness. Monoallelic mutations in PDZD7 increase the severity of Usher type II syndrome caused by mutations in USH2A and GPR98, which respectively encode usherin and GPR98. PDZ domain-containing 7 protein (PDZD7) is a paralog of the scaffolding proteins harmonin and whirlin, which are implicated in Usher type 1 and type 2 syndromes. While usherin and GPR98 have been reported to form hair cell stereocilia ankle-links, harmonin localizes to the stereocilia upper tip-link density and whirlin localizes to both tip and ankle-link regions. Here, we used mass spectrometry to show that PDZD7 is expressed in chick stereocilia at a comparable molecular abundance to GPR98. We also show by immunofluorescence and by overexpression of tagged proteins in rat and mouse hair cells that PDZD7 localizes to the ankle-link region, overlapping with usherin, whirlin, and GPR98. Finally, we show in LLC-PK1 cells that cytosolic domains of usherin and GPR98 can bind to both whirlin and PDZD7. These observations are consistent with PDZD7 being a modifier and candidate gene for USH2, and suggest that PDZD7 is a second scaffolding component of the ankle-link complex.


Current Biology | 2012

Myosin IIIB Uses an Actin-Binding Motif in Its Espin-1 Cargo to Reach the Tips of Actin Protrusions

Raymond C. Merritt; Uri Manor; Felipe T. Salles; M'hamed Grati; Andréa C. Dosé; William C. Unrath; Omar A. Quintero; Christopher M. Yengo; Bechara Kachar

Myosin IIIA (MYO3A) targets actin protrusion tips using a motility mechanism dependent on both motor and tail actin-binding activity [1]. We show that myosin IIIB (MYO3B) lacks tail actin-binding activity and is unable to target COS7 cell filopodia tips, yet is somehow able to target stereocilia tips. Strikingly, when MYO3B is coexpressed with espin-1 (ESPN1), a MYO3A cargo protein endogenously expressed in stereocilia [2], MYO3B targets and carries ESPN1 to COS7 filopodia tips. We show that this tip localization is lost when we remove the ESPN1 C terminus actin-binding site. We also demonstrate that, like MYO3A [2], MYO3B can elongate filopodia by transporting ESPN1 to the polymerizing end of actin filaments. The mutual dependence of MYO3B and ESPN1 for tip localization reveals a novel mechanism for the cell to regulate myosin tip localization via a reciprocal relationship with cargo that directly participates in actin binding for motility. Our results are consistent with a novel form of motility for class III myosins that requires both motor and tail domain actin-binding activity and show that the actin-binding tail can be replaced by actin-binding cargo. This study also provides a framework to better understand the late-onset hearing loss phenotype in patients with MYO3A mutations.


Journal of Biological Chemistry | 2010

Intermolecular Autophosphorylation Regulates Myosin IIIa Activity and Localization in Parallel Actin Bundles

Omar A. Quintero; Judy E. Moore; William C. Unrath; Uri Manor; Felipe T. Salles; M'hamed Grati; Bechara Kachar; Christopher M. Yengo

Myosin IIIa (Myo3A) transports cargo to the distal end of actin protrusions and contains a kinase domain that is thought to autoregulate its activity. Because Myo3A tends to cluster at the tips of actin protrusions, we investigated whether intermolecular phosphorylation could regulate Myo3A biochemical activity, cellular localization, and cellular function. Inactivation of Myo3A 2IQ kinase domain with the point mutation K50R did not alter maximal ATPase activity, whereas phosphorylation of Myo3A 2IQ resulted in reduced maximal ATPase activity and actin affinity. The rate and degree of Myo3A 2IQ autophosphorylation was unchanged by the presence of actin but was found to be dependent upon Myo3A 2IQ concentration within the range of 0.1 to 1.2 μm, indicating intermolecular autophosphorylation. In cultured cells, we observed that the filopodial tip localization of Myo3A lacking the kinase domain decreased when co-expressed with kinase-active, full-length Myo3A. The cellular consequence of reduced Myo3A tip localization was decreased filopodial density along the cell periphery, identifying a novel cellular function for Myo3A in mediating the formation and stability of actin-based protrusions. Our results suggest that Myo3A motor activity is regulated through a mechanism involving concentration-dependent autophosphorylation. We suggest that this regulatory mechanism plays an essential role in mediating the transport and actin bundle formation/stability functions of Myo3A.


Journal of Medical Microbiology | 2015

Current concepts in the pathogenesis and treatment of chronic suppurative otitis media.

Rahul Mittal; Christopher V. Lisi; Robert Gerring; Jeenu Mittal; Kalai Mathee; Giri Narasimhan; Rajeev K. Azad; Qi Yao; M'hamed Grati; Denise Yan; Adrien A. Eshraghi; Simon I. Angeli; Fred F. Telischi; Xuezhong Liu

Otitis media (OM) is an inflammation of the middle ear associated with infection. Despite appropriate therapy, acute OM (AOM) can progress to chronic suppurative OM (CSOM) associated with ear drum perforation and purulent discharge. The effusion prevents the middle ear ossicles from properly relaying sound vibrations from the ear drum to the oval window of the inner ear, causing conductive hearing loss. In addition, the inflammatory mediators generated during CSOM can penetrate into the inner ear through the round window. This can cause the loss of hair cells in the cochlea, leading to sensorineural hearing loss. Pseudomonas aeruginosa and Staphylococcus aureus are the most predominant pathogens that cause CSOM. Although the pathogenesis of AOM is well studied, very limited research is available in relation to CSOM. With the emergence of antibiotic resistance as well as the ototoxicity of antibiotics and the potential risks of surgery, there is an urgent need to develop effective therapeutic strategies against CSOM. This warrants understanding the role of host immunity in CSOM and how the bacteria evade these potent immune responses. Understanding the molecular mechanisms leading to CSOM will help in designing novel treatment modalities against the disease and hence preventing the hearing loss.

Collaboration


Dive into the M'hamed Grati's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bechara Kachar

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher M. Yengo

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge