Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Felix Hauser is active.

Publication


Featured researches published by Felix Hauser.


Trends in Plant Science | 2009

HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants

Tomoaki Horie; Felix Hauser; Julian I. Schroeder

The salinization of irrigated lands is increasingly detrimental to plant biomass production and agricultural productivity, as most plant species are sensitive to high concentrations of sodium (Na(+)), which causes combined Na(+) toxicity and osmotic stress. Plants have multiple Na(+)-transport systems to circumvent Na(+) toxicity. Essential physiological functions of major Na(+) transporters and their mechanisms mediating salinity resistance have been identified in Arabidopsis , including the AtSOS1, AtNHX and AtHKT1;1 transporters. As we discuss here, recent studies have demonstrated that a class of xylem-parenchyma-expressed Na(+)-permeable plant HKT transporters represent a primary mechanism mediating salt tolerance and Na(+) exclusion from leaves in Arabidopsis, and that major salt-tolerance quantitative trait loci in monocot crop plants are also based on this HKT-mediated mechanism.


Plant Cell and Environment | 2010

A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress

Felix Hauser; Tomoaki Horie

Increasing soil salinity is a serious threat to agricultural productions worldwide in the 21st century. Several essential Na(+) transporters such as AtNHX1 and AtSOS1 function in Na(+) tolerance under salinity stress in plants. Recently, evidence for a new primary salt tolerance mechanism has been reported, which is mediated by a class of HKT transporters both in dicots such as Arabidopsis and monocot crops such as rice and wheat. Here we present a review on vital physiological functions of HKT transporters including AtHKT1;1 and OsHKT1;5 in preventing shoot Na(+) over-accumulation by mediating Na(+) exclusion from xylem vessels in the presence of a large amount of Na(+) thereby protecting leaves from salinity stress. Findings of the HKT2 transporter sub-family are also updated in this review. Subjects regarding function and regulation of HKT transporters, which need to be elucidated in future research, are discussed.


Current Opinion in Plant Biology | 2011

Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic.

David G. Mendoza-Cózatl; Timothy O. Jobe; Felix Hauser; Julian I. Schroeder

Iron, zinc, copper and manganese are essential metals for cellular enzyme functions while cadmium, mercury and the metalloid arsenic lack any biological function. Both, essential metals, at high concentrations, and non-essential metals and metalloids are extremely reactive and toxic. Therefore, plants have acquired specialized mechanisms to sense, transport and maintain essential metals within physiological concentrations and to detoxify non-essential metals and metalloids. This review focuses on the recent identification of transporters that sequester cadmium and arsenic in vacuoles and the mechanisms mediating the partitioning of these metal(loid)s between roots and shoots. We further discuss recent models of phloem-mediated long-distance transport, seed accumulation of Cd and As and recent data demonstrating that plants posses a defined transcriptional response that allow plants to preserve metal homeostasis. This research is instrumental for future engineering of reduced toxic metal(loid) accumulation in edible crop tissues as well as for improved phytoremediation technologies.


Molecular Plant-microbe Interactions | 2007

Genome-Wide Transcript Analysis of Bradyrhizobium japonicum Bacteroids in Soybean Root Nodules

Gabriella Pessi; Christian H. Ahrens; Hubert Rehrauer; Andrea Lindemann; Felix Hauser; Hans-Martin Fischer; Hauke Hennecke

The transcriptome of endosymbiotic Bradyrhizobium japonicum bacteroids was assessed, using RNA extracted from determinate soybean root nodules. Results were compared with the transcript profiles of B. japonicum cells grown in either aerobic or microaerobic culture. Microoxia is a known trigger for the induction of symbiotically relevant genes. In fact, one third of the genes induced in bacteroids at day 21 after inoculation are congruent with those up-regulated in culture by a decreased oxygen concentration. The other induced genes, however, may be regulated by cues other than oxygen limitation. Both groups of genes provide a rich source for the possible discovery of novel functions related to symbiosis. Samples taken at different timepoints in nodule development have led to the distinction of genes expressed early and late in bacteroids. The experimental approach applied here is also useful for B. japonicum mutant analyses. As an example, we compared the transcriptome of wild-type bacteroids with that of bacteroids formed by a mutant defective in the RNA polymerase transcription factor sigma54. This led to a collection of hitherto unrecognized B. japonicum genes potentially transcribed in planta in a sigma54-dependent manner.


Current Opinion in Plant Biology | 2015

Mechanisms of abscisic acid-mediated control of stomatal aperture.

Shintaro Munemasa; Felix Hauser; Jiyoung Park; Rainer Waadt; Benjamin Brandt; Julian I. Schroeder

Drought stress triggers an increase in the level of the plant hormone abscisic acid (ABA), which initiates a signaling cascade to close stomata and reduce water loss. Recent studies have revealed that guard cells control cytosolic ABA concentration through the concerted actions of biosynthesis, catabolism as well as transport across membranes. Substantial progress has been made at understanding the molecular mechanisms of how the ABA signaling core module controls the activity of anion channels and thereby stomatal aperture. In this review, we focus on our current mechanistic understanding of ABA signaling in guard cells including the role of the second messenger Ca(2+) as well as crosstalk with biotic stress responses.


Current Biology | 2011

Chemical genetics reveals negative regulation of abscisic acid signaling by a plant immune response pathway.

Tae Houn Kim; Felix Hauser; Tracy Ha; Shaowu Xue; Maik Böhmer; Shintaro Munemasa; Katharine E. Hubbard; Nora Peine; Byeong Ha Lee; Stephen Lee; Nadia Robert; Jane E. Parker; Julian I. Schroeder

Coordinated regulation of protection mechanisms against environmental abiotic stress and pathogen attack is essential for plant adaptation and survival. Initial abiotic stress can interfere with disease-resistance signaling [1-6]. Conversely, initial plant immune signaling may interrupt subsequent abscisic acid (ABA) signal transduction [7, 8]. However, the processes involved in this crosstalk between these signaling networks have not been determined. By screening a 9600-compound chemical library, we identified a small molecule [5-(3,4-dichlorophenyl)furan-2-yl]-piperidine-1-ylmethanethione (DFPM) that rapidly downregulates ABA-dependent gene expression and also inhibits ABA-induced stomatal closure. Transcriptome analyses show that DFPM also stimulates expression of plant defense-related genes. Major early regulators of pathogen-resistance responses, including EDS1, PAD4, RAR1, and SGT1b, are required for DFPM-and notably also for Pseudomonas-interference with ABA signal transduction, whereas salicylic acid, EDS16, and NPR1 are not necessary. Although DFPM does not interfere with early ABA perception by PYR/RCAR receptors or ABA activation of SnRK2 kinases, it disrupts cytosolic Ca(2+) signaling and downstream anion channel activation in a PAD4-dependent manner. Our findings provide evidence that activation of EDS1/PAD4-dependent plant immune responses rapidly disrupts ABA signal transduction and that this occurs at the level of Ca(2+) signaling, illuminating how the initial biotic stress pathway interferes with ABA signaling.


Molecular Microbiology | 2006

Bradyrhizobium japonicum senses iron through the status of haem to regulate iron homeostasis and metabolism

Jianhua Yang; Indu Sangwan; Andrea Lindemann; Felix Hauser; Hauke Hennecke; Hans-Martin Fischer; Mark R. O'Brian

The Irr protein from the bacterium Bradyrhizobium japonicum is expressed under iron limitation to mediate iron control of haem biosynthesis. The regulatory input to Irr is the status of haem and its precursors iron and protoporphyrin at the site of haem synthesis. Here, we show that Irr controls the expression of iron transport genes and many other iron‐regulated genes not directly involved in haem synthesis. Irr is both a positive and negative effector of gene expression, and in at least some cases the control is direct. Loss of normal iron responsiveness of those genes in an irr mutant, as well as a lower total cellular iron content, suggests that Irr is required for the correct perception of the cellular iron status. Degradation of Irr in iron replete cells requires haem. Accordingly, control of Irr‐regulated genes by iron was aberrant in a haem‐defective strain, and iron replete mutant cells behave as if they are iron‐limited. In addition, the haem mutant had an abnormally high cellular iron content. The findings indicate that B. japonicum senses iron via the status of haem biosynthesis in an Irr‐dependent manner to regulate iron homeostasis and metabolism.


Molecular Genetics and Genomics | 2007

Dissection of the Bradyrhizobium japonicum NifA+σ54 regulon, and identification of a ferredoxin gene ( fdxN ) for symbiotic nitrogen fixation

Felix Hauser; Gabriella Pessi; Markus Friberg; Christoph Weber; Nicola Rusca; Andrea Lindemann; Hans-Martin Fischer; Hauke Hennecke

Hierarchically organized regulatory proteins form a complex network for expression control of symbiotic and accessory genes in the nitrogen-fixing soybean symbiont Bradyrhizobium japonicum. A genome-wide survey of regulatory interactions was made possible with the design of a custom-made gene chip. Here, we report the first use of the microarray in a comprehensive and complete characterization of the B. japonicum NifA+σ54 regulon which forms an important node in the entire network. Comparative transcript profiles of anaerobically grown wild-type, nifA, and rpoN1/2 mutant cells were complemented with a position-specific frequency matrix-based search for NifA- and σ54-binding sites plus a simple operon definition. One of the newly identified NifA+σ54-dependent genes, fdxN, encodes a ferredoxin required for efficient symbiotic nitrogen fixation, which makes it a candidate for being a direct electron donor to nitrogenase. The fdxN gene has an unconventional, albeit functional σ54 promoter with the dinucleotide GA instead of the consensus GC motif at position −12. A GC-containing mutant promoter and the atypical GA-containing promoter of the wild type were disparately activated. Expression analyses were also carried out with two other NifA+σ54 targets (ectC; ahpC). Incidentally, the tiling-like design of the microarray has helped to arrive at completely revised annotations of the ectC- and ahpC-upstream DNA regions, which are now compatible with promoter locations. Taken together, the approaches used here led to a substantial expansion of the NifA+σ54 regulon size, culminating in a total of 65 genes for nitrogen fixation and diverse other processes.


Journal of Bacteriology | 2008

Comprehensive Assessment of the Regulons Controlled by the FixLJ-FixK2-FixK1 Cascade in Bradyrhizobium japonicum

Socorro Mesa; Felix Hauser; Markus Friberg; Emmanuelle Malaguti; Hans-Martin Fischer; Hauke Hennecke

Symbiotic N(2) fixation in Bradyrhizobium japonicum is controlled by a complex transcription factor network. Part of it is a hierarchically arranged cascade in which the two-component regulatory system FixLJ, in response to a moderate decrease in oxygen concentration, activates the fixK(2) gene. The FixK(2) protein then activates not only a number of genes essential for microoxic respiration in symbiosis (fixNOQP and fixGHIS) but also further regulatory genes (rpoN(1), nnrR, and fixK(1)). The results of transcriptome analyses described here have led to a comprehensive and expanded definition of the FixJ, FixK(2), and FixK(1) regulons, which, respectively, consist of 26, 204, and 29 genes specifically regulated in microoxically grown cells. Most of these genes are subject to positive control. Particular attention was addressed to the FixK(2)-dependent genes, which included a bioinformatics search for putative FixK(2) binding sites on DNA (FixK(2) boxes). Using an in vitro transcription assay with RNA polymerase holoenzyme and purified FixK(2) as the activator, we validated as direct targets eight new genes. Interestingly, the adjacent but divergently oriented fixK(1) and cycS genes shared the same FixK(2) box for the activation of transcription in both directions. This recognition site may also be a direct target for the FixK(1) protein, because activation of the cycS promoter required an intact fixK(1) gene and either microoxic or anoxic, denitrifying conditions. We present evidence that cycS codes for a c-type cytochrome which is important, but not essential, for nitrate respiration. Two other, unexpected results emerged from this study: (i) specifically FixK(1) seemed to exert a negative control on genes that are normally activated by the N(2) fixation-specific transcription factor NifA, and (ii) a larger number of genes are expressed in a FixK(2)-dependent manner in endosymbiotic bacteroids than in culture-grown cells, pointing to a possible symbiosis-specific control.


Current Opinion in Biotechnology | 2015

HKT transporters mediate salt stress resistance in plants: from structure and function to the field.

Shin Hamamoto; Tomoaki Horie; Felix Hauser; Ulrich Deinlein; Julian I. Schroeder; Nobuyuki Uozumi

Plant cells are sensitive to salinity stress and do not require sodium as an essential element for their growth and development. Saline soils reduce crop yields and limit available land. Research shows that HKT transporters provide a potent mechanism for mediating salt tolerance in plants. Knowledge of the molecular ion transport and regulation mechanisms and the control of HKT gene expression are crucial for understanding the mechanisms by which HKT transporters enhance crop performance under salinity stress. This review focuses on HKT transporters in monocot plants and in Arabidopsis as a dicot plant, as a guide to efforts toward improving salt tolerance of plants for increasing the production of crops and bioenergy feedstocks.

Collaboration


Dive into the Felix Hauser's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiyoung Park

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jingbo Zhang

University of California

View shared research outputs
Top Co-Authors

Avatar

Nuo Wang

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge