Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Felix Jakob is active.

Publication


Featured researches published by Felix Jakob.


Biotechnology and Bioengineering | 2013

Increasing activity and thermal resistance of Bacillus gibsonii alkaline protease (BgAP) by directed evolution

Ronny Martinez; Felix Jakob; Ran Tu; Petra Siegert; Karl-Heinz Maurer; Ulrich Schwaneberg

Bacillus gibsonii Alkaline Protease (BgAP) is a recently reported subtilisin protease exhibiting activity and stability properties suitable for applications in laundry and dish washing detergents. However, BgAP suffers from a significant decrease of activity at low temperatures. In order to increase BgAP activity at 15°C, a directed evolution campaign based on the SeSaM random mutagenesis method was performed. An optimized microtiter plate expression system in B. subtilis was established and classical proteolytic detection methods were adapted for high throughput screening. In parallel, the libraries were screened for increased residual proteolytic activity after incubation at 58°C. Three iterative rounds of directed BgAP evolution yielded a set of BgAP variants with increased specific activity (Kcat) at 15°C and increased thermal resistance. Recombination of both sets of amino acid substitutions resulted finally in variant MF1 with a 1.5‐fold increased specific activity (15°C) and over 100 times prolonged half‐life at 60°C (224 min compared to 2 min of the WT BgAP). None of the introduced amino acid substitutions were close to the active site of BgAP. Activity‐altering amino acid substitutions were from non‐charged to non‐charged or from sterically demanding to less demanding. Thermal stability improvements were achieved by substitutions to negatively charged amino acids in loop areas of the BgAP surface which probably fostered ionic and hydrogen bonds interactions. Biotechnol. Bioeng. 2013; 110: 711–720.


New Biotechnology | 2015

Advances in protease engineering for laundry detergents

Ljubica Vojcic; Christian Pitzler; Georgette Körfer; Felix Jakob; Ronny Martinez; Karl-Heinz Maurer; Ulrich Schwaneberg

Proteases are essential ingredients in modern laundry detergents. Over the past 30 years, subtilisin proteases employed in the laundry detergent industry have been engineered by directed evolution and rational design to tailor their properties towards industrial demands. This comprehensive review discusses recent success stories in subtilisin protease engineering. Advances in protease engineering for laundry detergents comprise simultaneous improvement of thermal resistance and activity at low temperatures, a rational strategy to modulate pH profiles, and a general hypothesis for how to increase promiscuous activity towards the production of peroxycarboxylic acids as mild bleaching agents. The three protease engineering campaigns presented provide in-depth analysis of protease properties and have identified principles that can be applied to improve or generate enzyme variants for industrial applications beyond laundry detergents.


Biomacromolecules | 2017

Sortase-Mediated Surface Functionalization of Stimuli-Responsive Microgels

Elisabeth Gau; Diana M. Mate; Zhi Zou; Alex Oppermann; Alexander Töpel; Felix Jakob; Dominik Wöll; Ulrich Schwaneberg; Andrij Pich

In this work we explored an enzyme-mediated method for selective and efficient decoration of aqueous microgels with biomolecules. Poly(N-vinylcaprolactam) (VCL) microgels with varied amounts of glycidyl methacrylate (GMA) as comonomer incorporated in the microgel shell were synthesized and characterized in regard to their size, swelling degree, and temperature-responsiveness in aqueous solutions. The surface of the PVCL/GMA microgel containing 5 mol % glycidyl methyacrylate was modified by grafting of a specific recognition peptide sequence (LPETG) for Sortase A from Staphylococcus aureus (Sa-SrtAΔ59). Sortase-mediated conjugation of the enhanced Green Fluorescent Protein (eGFP) carrying a N-terminal triglycine tag to LPETG-modified microgels was successfully performed. Conjugation of eGFP to the microgel surface was qualitatively proven by confocal microscopy and by fluorescence intensity measurements. The developed protocol enables a precise control of the amount of eGFP grafted to the microgel surface as evidenced by the linear increase of fluorescence intensity of modified microgel samples. The kinetic of the sortase-mediated coupling reaction was determined by time-dependent fluorescence intensity measurements. In summary, sortase-mediated coupling reactions are a simple and powerful technique for targeted surface functionalization of stimuli-responsive microgels with biomolecules.


AMB Express | 2013

Increasing protein production by directed vector backbone evolution

Felix Jakob; Christian Lehmann; Ronny Martinez; Ulrich Schwaneberg

Recombinant protein production in prokaryotic and eukaryotic organisms was a key enabling technology for the rapid development of industrial and molecular biotechnology. However, despite all progress the improvement of protein production is an ongoing challenge and of high importance for cost-effective enzyme production. With the epMEGAWHOP mutagenesis protocol for vector backbone optimization we report a novel directed evolution based approach to increase protein production levels by randomly introducing mutations in the vector backbone. In the current study we validate the epMEGAWHOP mutagenesis protocol for three different expression systems. The latter demonstrated the general applicability of the epMEGAWHOP method. Cellulase and lipase production was doubled in one round of directed evolution by random mutagenesis of pET28a(+) and pET22b(+) vector backbones. Protease production using the vector pHY300PLK was increased ~4-times with an average of ~1.25 mutations per kb vector backbone. The epMEGAWHOP does not require any rational understanding of the expression machinery and can generally be applied to enzymes, expression vectors and related hosts. epMEGAWHOP is therefore from our point of view a robust, rapid and straight forward alternative for increasing protein production in general and for biotechnological applications.


ACS Combinatorial Science | 2018

Sortase-Mediated High-Throughput Screening Platform for Directed Enzyme Evolution

Zhi Zou; Diana M. Mate; Kristin Rübsam; Felix Jakob; Ulrich Schwaneberg

Sortase-catalyzed ligations have emerged as powerful tools for the site-specific ligation of peptides and proteins in material science and biocatalysis. In this work, a directed sortase evolution strategy (SortEvolve) has been developed as a general high-throughput screening (HTS) platform to improve activity of sortase A (application 1) and to perform directed laccase evolution through a semipurification process in 96-well microtiter plate (MTP) (application 2). A semipurification process in polypropylene MTP (PP-MTP) is achieved through the anchor peptide LCI, which acts as adhesion promoter. To validate the SortEvolve screening platform for both applications, three site-saturation mutagenesis (SSM) libraries of sortase A (Sa-SrtA) from Staphylococcus aureus (application 1) and two SSM libraries of the copper efflux oxidase (CueO laccase) from Escherichia coli (application 2) were generated at literature reported positions. After screening and rescreening, an array of Sa-SrtA variants (including the previously reported P94S, D160N, and D165A) and CueO variants (including the previously reported D439A and P444A) were identified. Further recombinant Sa-SrtA variant P94T/D160L/D165Q and CueO variant D439V/P444V were characterized with 22-fold and 103-fold improvements in catalytic efficiency compared with corresponding wild-types, respectively. An important advantage of the SortEvolve screening platform in comparison to many MTP-based screening systems is that the background noise was minimized (decreased 20-fold; application 2) due to the employed semipurification process. In essence, SortEvolve provides a universal surface-functionalized screening platform for sortases and enzymes in which especially background activity can be minimized to enable successful directed evolution campaigns.


Macromolecular Rapid Communications | 2016

Reversible Deactivation of Enzymes by Redox-Responsive Nanogel Carriers

Huan Peng; Kristin Rübsam; Felix Jakob; Patrizia Pazdzior; Ulrich Schwaneberg; Andrij Pich

Novel redox-responsive polymeric nanogels that allow highly efficient enzyme encapsulation and reversible modulation of enzyme activity are developed. The nanogel synthesis and encapsulation of enzyme are performed simultaneously via in situ crosslinking of pyridyldisulfide-functionalized water-soluble reactive copolymers, which are synthesized via reversible addition-fragmentation chain transfer copolymerization. Obtained nanogels with loaded cellulase demonstrate very good colloidal stability in aqueous solutions. The enzymatic activity of cellulase is greatly reduced when encapsulated in the nanogels and rapidly recovered in 10 × 10-3 m dithiothreitol solution. Fluorescence resonance energy transfer (FRET)-based experiments indicate that the recovered enzymatic activity is mainly ascribed to the release of the enzyme due to the degradation of the disulfide crosslinking network after addition of dithiothreitol (DTT), instead of the enhanced substrate transport rate. The developed enzyme immobilization method opens new possibilities for reversible activation/deactivation of enzymes and opens up new directions for targeted protein therapy and biotechnology applications.


Biotechnology and Bioengineering | 2018

A robust protocol for directed aryl sulfotransferase evolution toward the carbohydrate building block GlcNAc

Shohana Islam; Diana M. Mate; Ronny Martinez; Felix Jakob; Ulrich Schwaneberg

Bacterial aryl sulfotransferases (AST) utilize p‐nitrophenylsulfate (pNPS) as a phenolic donor to sulfurylate typically a phenolic acceptor. Interest in aryl sulfotransferases is growing because of their broad variety of acceptors and cost‐effective sulfuryl‐donors. For instance, aryl sulfotransferase A (ASTA) from Desulfitobacterium hafniense was recently reported to sulfurylate d‐glucose. In this study, a directed evolution protocol was developed and validated for aryl sulfotransferase B (ASTB). Thereby the well‐known pNPS quantification system was advanced to operate efficiently as a continuous screening system in 96‐well MTP format with a true coefficient of variation of 14.3%. A random mutagenesis library (SeSaM library) of ASTB was screened (1,760 clones) to improve sulfurylation of the carbohydrate building block N‐acetylglucosamine (GlcNAc). The beneficial variant ASTB‐V1 (Val579Asp) showed an up to 3.4‐fold increased specific activity toward GlcNAc when compared to ASTB‐WT. HPLC‐ and MS‐analysis confirmed ASTB‐V1s increased GlcNAc monosulfurylation (2.4‐fold increased product formation) representing the validation of the first successful directed evolution round of an AST for a saccharide substrate.


ChemBioChem | 2018

Directed Evolution of Hyaluronic Acid Synthase from Pasteurella multocida towards High-Molecular-Weight Hyaluronic Acid

John Mandawe; Belén Infanzón; Anna Eisele; Henning Zaun; Jürgen Kuballa; Mehdi D. Davari; Felix Jakob; Lothar Elling; Ulrich Schwaneberg

Hyaluronic acid (HA), with diverse cosmetic and medical applications, is the natural glycosaminoglycan product of HA synthases. Although process and/or metabolic engineering are used for industrial HA production, the potential of protein engineering has barely been realised. Herein, knowledge‐gaining directed evolution (KnowVolution) was employed to generate an HA synthase variant from Pasteurella multocida (pmHAS) with improved chain‐length specificity and a twofold increase in mass‐based turnover number. Seven improved pmHAS variants out of 1392 generated by error‐prone PCR were identified; eight prospective positions were saturated and the most beneficial amino acid substitutions were recombined. After one round of KnowVolution, the longest HA polymer (<4.7 MDa), through an engineered pmHAS variant in a cell‐free system, was synthesised. Computational studies showed that substitutions from the best variant (T40L, V59M and T104A) are distant from the glycosyltransferase sites and increase the flexibility of the N‐terminal region of pmHAS. Taken together, these findings suggest that the N terminus may be involved in HA synthesis and demonstrate the potential of protein engineering towards improved HA synthase activity.


Biotechnology and Bioengineering | 2018

Directed evolution of polypropylene and polystyrene binding peptides

Kristin Rübsam; Lina Weber; Felix Jakob; Ulrich Schwaneberg

Surface functionalization of biological inert polymers (e.g., polypropylene PP; polystyrene PS) with material binding peptides facilitates an efficient immobilization of enzymes, bioactive peptides or antigens at ambient temperature in water. The developed robust directed evolution protocol enables to tailor polymer binding anchor peptides (PBPs) for efficient binding under application conditions. Key for a successful directed evolution campaign was to develop an epPCR protocol with a very high mutation frequency (60 mutations/kb) to ensure sufficient diversity in PBPs (47 aas LCI: “liquid chromatography peak I”; 44 aas TA2: “Tachystatin A2”). LCI and TA2 were genetically fused to the reporter egfp to quantify peptide binding on PP and PS by fluorescence analysis. The Peptide‐Polymer evolution protocol (PePevo protocol) was validated in two directed evolution campaigns for two PBPs and polymers (LCI: PP; TA2: PS). Surfactants were used as selection pressure for improved PBP binders (non‐ionic surfactant Triton X‐100; 1 mM for LCI‐PP // anionic surfactant LAS; 0.5 mM for TA2‐PS). PePevo yielded an up to three fold improved PP‐binder (LCI‐M1‐PP: I24T, Y29H, E42 K and LCI‐M2‐PP: D31V, E42G) and an up to six fold stronger PS‐binder (TA2‐M1‐PS: R3S, L6P, V12 K, S15P, C29R, R30L, F33S, Y44H and TA2‐M2‐PS: F9C, C24S, G26D, S31G, C41S, Y44Q).


Chemistry: A European Journal | 2018

KnowVolution Campaign of an Aryl Sulfotransferase Increases Activity toward Cellobiose

Shohana Islam; Dominic Laaf; Belén Infanzón; Helena Pelantová; Mehdi D. Davari; Felix Jakob; Vladimír Křen; Lothar Elling; Ulrich Schwaneberg

Sulfated polysaccharides such as cellulose can mimic the functionalities of pathophysiologically important glycosaminoglycans. Enzymatic sulfation offers a green chemistry route to selective (mono)sulfation of oligosaccharides (e.g., cellobiose as a building block of cellulose) in aqueous solution, at ambient temperature, and high chemoselectivity. Here, we report the first KnowVolution campaign for the aryl sulfotransferase B (ASTB) from Desulfitobacterium hafniense to advance ASTB toward a synthetically attractive biocatalyst. The generated final recombination variant (ASTB-M5) carries two amino acid substitutions (Leu446Pro and Val579Lys) leading to an up to 7.6-fold increase in specific activity (6.15 U mg-1 ) that was obtained with one round of KnowVolution. Mass spectrometry analysis confirmed a monosulfated product of cellobiose and structure elucidation by NMR confirmed the sulfation at the positions C-3 or C-4 of GlcNAc-linker-tBoc as opposed to the preferred C-6 by chemical means. Computational analysis suggested an important role of Leu446Pro in substrate-binding and recognized Val579Lys as a distal substitution.

Collaboration


Dive into the Felix Jakob's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrij Pich

RWTH Aachen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Uwe Conrath

RWTH Aachen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge