Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Uwe Conrath is active.

Publication


Featured researches published by Uwe Conrath.


Trends in Plant Science | 2011

Molecular aspects of defence priming

Uwe Conrath

Plants can be primed for more rapid and robust activation of defence to biotic or abiotic stress. Priming follows perception of molecular patterns of microbes or plants, recognition of pathogen-derived effectors or colonisation by beneficial microbes. However the process can also be induced by treatment with some natural or synthetic compounds and wounding. The primed mobilization of defence is often associated with development of immunity and stress tolerance. Although the phenomenon has been known for decades, the molecular basis of priming is poorly understood. Here, I summarize recent progress made in unravelling molecular aspects of defence priming that is the accumulation of dormant mitogen-activated protein kinases, chromatin modifications and alterations of primary metabolism.


The Plant Cell | 2009

Mitogen-Activated Protein Kinases 3 and 6 Are Required for Full Priming of Stress Responses in Arabidopsis thaliana

Gerold J. M. Beckers; Michal Rafal Jaskiewicz; Yidong Liu; William Underwood; Sheng Yang He; Shuqun Zhang; Uwe Conrath

In plants and animals, induced resistance (IR) to biotic and abiotic stress is associated with priming of cells for faster and stronger activation of defense responses. It has been hypothesized that cell priming involves accumulation of latent signaling components that are not used until challenge exposure to stress. However, the identity of such signaling components has remained elusive. Here, we show that during development of chemically induced resistance in Arabidopsis thaliana, priming is associated with accumulation of mRNA and inactive proteins of mitogen-activated protein kinases (MPKs), MPK3 and MPK6. Upon challenge exposure to biotic or abiotic stress, these two enzymes were more strongly activated in primed plants than in nonprimed plants. This elevated activation was linked to enhanced defense gene expression and development of IR. Strong elicitation of stress-induced MPK3 and MPK6 activity is also seen in the constitutive priming mutant edr1, while activity was attenuated in the priming-deficient npr1 mutant. Moreover, priming of defense gene expression and IR were lost or reduced in mpk3 or mpk6 mutants. Our findings argue that prestress deposition of the signaling components MPK3 and MPK6 is a critical step in priming plants for full induction of defense responses during IR.


EMBO Reports | 2011

Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response

Michal Rafal Jaskiewicz; Uwe Conrath; Christoph Peterhänsel

Priming of defence genes for amplified response to secondary stress can be induced by application of the plant hormone salicylic acid or its synthetic analogue acibenzolar S‐methyl. In this study, we show that treatment with acibenzolar S‐methyl or pathogen infection of distal leaves induce chromatin modifications on defence gene promoters that are normally found on active genes, although the genes remain inactive. This is associated with an amplified gene response on challenge exposure to stress. Mutant analyses reveal a tight correlation between histone modification patterns and gene priming. The data suggest a histone memory for information storage in the plant stress response.


Plant Physiology | 2002

Benzothiadiazole-Induced Priming for Potentiated Responses to Pathogen Infection, Wounding, and Infiltration of Water into Leaves Requires the NPR1/NIM1 Gene in Arabidopsis

Annegret Kohler; Sandra Schwindling; Uwe Conrath

Systemic acquired resistance (SAR) is a plant defense state that is induced, for example, after previous pathogen infection or by chemicals that mimic natural signaling compounds. SAR is associated with the ability to induce cellular defense responses more rapidly and to a greater degree than in noninduced plants, a process called “priming.” Arabidopsis plants were treated with the synthetic SAR inducer benzothiadiazole (BTH) before stimulating two prominent cellular defense responses, namely Phe AMMONIA-LYASE(PAL) gene activation and callose deposition. Although BTH itself was essentially inactive at the immediate induction of these two responses, the pretreatment with BTH greatly augmented the subsequent PAL gene expression induced byPseudomonas syringae pv. tomatoinfection, wounding, or infiltrating the leaves with water. The BTH pretreatment also enhanced the production of callose, which was induced by wounding or infiltrating the leaves with water. It is interesting that the potentiation by BTH pretreatment of PAL gene activation and callose deposition was not seen in the Arabidopsisnonexpresser of PR genes 1/noninducible immunity 1mutant, which is compromised in SAR. In a converse manner, augmentedPAL gene activation and enhanced callose biosynthesis were found, without BTH pretreatment, in the Arabidopsisconstitutive expresser of pathogenesis-related genes (cpr)1 and constitutive expresser of pathogenesis-related genes 5 mutants, in which SAR is constitutive. Moreover, priming for potentiated defense gene activation was also found in pathogen-induced SAR. In sum, the results suggest that priming is an important cellular mechanism in acquired disease resistance of plants that requires thenonexpresser of PR genes 1/noninducible immunity 1gene.


Annual Review of Phytopathology | 2015

Priming for Enhanced Defense

Uwe Conrath; Gerold J. M. Beckers; Caspar Langenbach; Michal Rafal Jaskiewicz

When plants recognize potential opponents, invading pathogens, wound signals, or abiotic stress, they often switch to a primed state of enhanced defense. However, defense priming can also be induced by some natural or synthetic chemicals. In the primed state, plants respond to biotic and abiotic stress with faster and stronger activation of defense, and this is often linked to immunity and abiotic stress tolerance. This review covers recent advances in disclosing molecular mechanisms of priming. These include elevated levels of pattern-recognition receptors and dormant signaling enzymes, transcription factor HsfB1 activity, and alterations in chromatin state. They also comprise the identification of aspartyl-tRNA synthetase as a receptor of the priming activator β-aminobutyric acid. The article also illustrates the inheritance of priming, exemplifies the role of recently identified priming activators azelaic and pipecolic acid, elaborates on the similarity to defense priming in mammals, and discusses the potential of defense priming in agriculture.


European Journal of Plant Pathology | 2001

Priming as a mechanism in induced systemic resistance of plants

Uwe Conrath; Oliver Thulke; Vera Katz; Sandra Schwindling; Annegret Kohler

Induced systemic resistance is a plant defence state that is associated with an enhanced ability – the so-called priming – to resist pathogen attack by stronger activation of cellular defence responses. So far, however, priming has not been widely appreciated when studying induced plant disease resistance. During the past several years, it has been demonstrated that pre-treatment of cultured parsley cells with inducers of systemic resistance, salicylic acid or a benzothiadiazole, leads to the direct activation of a set of defence-related genes and also primes the cells for stronger elicitation of another set of defence genes including those encoding phenylalanine ammonia-lyase. From these results, it was concluded that the resistance inducers have at least a dual role in plant defence-gene activation. When elucidating whether priming plays a role in induced systemic resistance of Arabidopsis, pre-treating plants with benzothiadiazole was found to augment the subsequent activation of phenylalanine ammonia-lyase genes by Pseudomonas infection, wounding and osmotic stress and also to enhance wound/osmotic stress-induced callose production. The augmentation of phenylalanine ammonia-lyase gene activation or/and callose deposition was not seen in the Arabidopsis non-expresser of pathogenesis-related genes1 mutant which is compromised in induced resistance, while it was present, without benzothiadiazole pre-treatment, in the constitutive expresser of pr genes1 and 5 mutants in which induced resistance is constitutive. Together these studies point to priming as an important cellular mechanism in induced systemic resistance of plants which requires the intact non-expresser of pathogenesis-related genes1 gene.


Advances in Botanical Research | 2009

Priming of induced plant defense responses

Uwe Conrath

Abstract Upon infection by a pathogen, colonization of the roots by certain beneficial microbes, or after treatment with various chemicals, plants can establish a unique physiological situation which is called the “primed” state of the plant. In the primed condition, plants respond faster and/or more strongly with the activation of defense responses when subsequently challenged by microbial pathogens, herbivorous insects, or abiotic stresses. The potentiated activation of defense responses in primed plants is frequently associated with enhanced resistance to the challenging stress. Although priming has been known as a component of various induced resistance phenomena for decades, most of the progress in the understanding of the phenomenon has been made over the past decade. Here, I summarize the current knowledge of priming, its role in various forms of induced resistance, and its relevance for plant protection in the greenhouse and in the field.


Plant Physiology | 1993

Conditioning of parsley (Petroselinum crispum L.) suspension cells increases elicitor-induced incorporation of cell wall phenolics

Heinrich Kauss; Rochus Franke; K. Krause; Uwe Conrath; Wolfgang Jeblick; B. Grimmig; U. Matern

The elicitor-induced incorporation of phenylpropanoid derivatives into the cell wall and the secretion of soluble coumarin derivatives (phytoalexins) by parsley (Petroselinum crispum L.) suspension cultures can be potentiated by pretreatment of the cultures with 2,6-dichloroisonicotinic acid or derivatives of salicylic acid. To investigate this phenomenon further, the cell walls and an extracellular soluble polymer were isolated from control cells or cells treated with an elicitor from Phytophthora megasperma f. sp. glycinea. After alkaline hydrolysis, both fractions from elicited cells showed a greatly increased content of 4-coumaric, ferulic, and 4-hydroxybenzoic acid, as well as 4-hydroxybenzaldehyde and vanillin. Two minor peaks were identified as tyrosol and methoxytyrosol. The pretreatment effect is most pronounced at a low elicitor concentration. Its specificity was elaborated for coumarin secretion. When the parsley suspension cultures were preincubated for 1 d with 2,6-dichloroisonicotinic, 4- or 5-chlorosalicylic, or 3,5- dichlorosalicylic acid, the cells exhibited a greatly increased elicitor response. Pretreatment with isonicotinic, salicylic, acetylsalicylic, or 2,6-dihydroxybenzoic acid was less efficient in enhancing the response, and some other isomers were inactive. This increase in elicitor response was also observed for the above-mentioned monomeric phenolics, which were liberated from cell walls upon alkaline hydrolysis and for “lignin-like” cell wall polymers determined by the thioglycolic acid method. It was shown for 5-chlorosalicylic acid that conditioning most likely improves the signal transduction leading to the activation of genes encoding phenylalanine ammonia lyase and 4-coumarate: coenzyme A ligase. The conditioning thus sensitizes the parsley suspension cells to respond to lower elicitor concentrations. If a similar mechanism were to apply to whole plants treated with 2,6-dichloroisonicotinic acid, a known inducer of systemic acquired resistance, one can hypothesize that fungal pathogens might be recognized more readily and effectively.


Plant Signaling & Behavior | 2006

Systemic Acquired Resistance

Uwe Conrath

Upon infection with necrotizing pathogens many plants develop an enhanced resistance to further pathogen attack also in the uninoculated organs. This type of enhanced resistance is referred to as systemic acquired resistance (SAR). In the SAR state, plants are primed (sensitized) to more quickly and more effectively activate defense responses the second time they encounter pathogen attack. Since SAR depends on the ability to access past experience, acquired disease resistance is a paradigm for the existence of a form of “plant memory”. Although the phenomenon has been known since the beginning of the 20th century, major progress in the understanding of SAR was made over the past sixteen years. This review covers the current knowledge of molecular, biochemical and physiological mechanisms that are associated with SAR.


Molecular Plant Pathology | 2010

Phakopsora pachyrhizi, the causal agent of Asian soybean rust

Katharina Goellner; Marco Loehrer; Caspar Langenbach; Uwe Conrath; Eckhard Koch; Ulrich Schaffrath

UNLABELLED The plant pathogenic basidiomycete fungi Phakopsora pachyrhizi and Phakopsora meibomiae cause rust disease in soybean plants. Phakopsora pachyrhizi originated in Asia-Australia, whereas the less aggressive P. meibomiae originated in Latin America. In the New World, P. pachyrhizi was first reported in the 1990s to have spread to Hawaii and, since 2001, it has been found in South America. In 2004, the pathogen entered continental USA. This review provides detailed information on the taxonomy and molecular biology of the pathogen, and summarizes strategies to combat the threat of this devastating disease. TAXONOMY Phakopsora pachyrhizi Syd. & P. Syd; uredial anamorph: Malupa sojae (syn. Uredo sojae); Domain Eukaryota; Kingdom Fungi; Phylum Basidiomycota; Order Uredinales; Class Urediniomycetes; Family Phakopsoraceae; Genus Phakopsora (http://www.indexfungorum.org). The nomenclature of rust spores and spore-producing structures used within this review follows Agrios GN (2005) Plant Pathology, 5th edn. London: Elsevier/Academic Press. HOST RANGE In the field, P. pachyrhizi infects leaf tissue from a broad range (at least 31 species in 17 genera) of leguminous plants. Infection of an additional 60 species in other genera has been achieved under laboratory conditions. DISEASE SYMPTOMS At the beginning of the disease, small, tan-coloured lesions, restricted by leaf veins, can be observed on infected soybean leaves. Lesions enlarge and, 5-8 days after initial infection, rust pustules (uredia, syn. uredinia) become visible. Uredia develop more frequently in lesions on the lower surface of the leaf than on the upper surface. The uredia open with a round ostiole through which uredospores are released.

Collaboration


Dive into the Uwe Conrath's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ruth Campe

RWTH Aachen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wolfgang Jeblick

Kaiserslautern University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge