Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Felix Maurer is active.

Publication


Featured researches published by Felix Maurer.


Plant Physiology and Biochemistry | 2011

Suppression of Fe deficiency gene expression by jasmonate

Felix Maurer; Sabine Müller; Petra Bauer

Fe deficiency genes are regulated in response to external supply of Fe as well as internal plant signals. Internal plant signals include plant hormones and systemic signals which coordinate shoot physiological requirements for Fe with local availability of Fe in roots. Induction of IRT1 and FRO2 gene expression can be used to monitor the Fe deficiency status of plant roots. Here, we investigated the role of jasmonate in the regulation of Fe deficiency responses and in the split root system. We found that jasmonate suppressed expression levels of IRT1 and FRO2 but not their inducibility in response to Fe deficiency. Analysis of the jasmonate-resistant mutant jar1-1 and pharmacological application of the lipoxygenase inhibitor ibuprofene supported an inhibitory effect of this plant hormone. Inhibition of IRT1 and FRO2 gene expression by jasmonate did not require the functional regulator FIT. By performing split root analyses we found that systemic down-regulation of Fe deficiency responses by Fe sufficiency of the shoot was not compromised by ibuprofene and in the jasmonate-insensitive mutant coi1-1. Therefore, we conclude that jasmonate acts as an inhibitor in fine-tuning Fe deficiency responses but that it is not involved in the systemic down-regulation of Fe deficiency responses in the root.


Plant Molecular Biology | 2014

Transcriptional coordination between leaf cell differentiation and chloroplast development established by TCP20 and the subgroup Ib bHLH transcription factors

Megan Andriankaja; Selahattin Danisman; Lorin Mignolet-Spruyt; Hannes Claeys; Irina Kochanke; Mattias Vermeersch; Liesbeth De Milde; Stefanie De Bodt; Veronique Storme; Aleksandra Skirycz; Felix Maurer; Petra Bauer; Per Mühlenbock; Frank Van Breusegem; Gerco C. Angenent; Richard G. H. Immink; Dirk Inzé

The establishment of the photosynthetic apparatus during chloroplast development creates a high demand for iron as a redox metal. However, iron in too high quantities becomes toxic to the plant, thus plants have evolved a complex network of iron uptake and regulation mechanisms. Here, we examined whether four of the subgroup Ib basic helix-loop-helix transcription factors (bHLH38, bHLH39, bHLH100, bHLH101), previously implicated in iron homeostasis in roots, also play a role in regulating iron metabolism in developing leaves. These transcription factor genes were strongly up-regulated during the transition from cell proliferation to expansion, and thus sink-source transition, in young developing leaves of Arabidopsis thaliana. The four subgroup Ib bHLH genes also showed reduced expression levels in developing leaves of plants treated with norflurazon, indicating their expression was tightly linked to the onset of photosynthetic activity in young leaves. In addition, we provide evidence for a mechanism whereby the transcriptional regulators SAC51 and TCP20 antagonistically regulate the expression of these four subgroup Ib bHLH genes. A loss-of-function mutant analysis also revealed that single mutants of bHLH38, bHLH39, bHLH100, and bHLH101 developed smaller rosettes than wild-type plants in soil. When grown in agar plates with reduced iron concentration, triple bhlh39 bhlh100 bhlh101 mutant plants were smaller than wild-type plants. However, measurements of the iron content in single and multiple subgroup Ib bHLH genes, as well as transcript profiling of iron response genes during early leaf development, do not support a role for bHLH38, bHLH39, bHLH100, and bHLH101 in iron homeostasis during early leaf development.


PLOS ONE | 2014

Responses of a triple mutant defective in three iron deficiency-induced Basic Helix-Loop-Helix genes of the subgroup Ib(2) to iron deficiency and salicylic acid.

Felix Maurer; Maria Augusta Naranjo Arcos; Petra Bauer

Plants are sessile organisms that adapt to external stress by inducing molecular and physiological responses that serve to better cope with the adverse growth condition. Upon low supply of the micronutrient iron, plants actively increase the acquisition of soil iron into the root and its mobilization from internal stores. The subgroup Ib(2) BHLH genes function as regulators in this response, however their concrete functions are not fully understood. Here, we analyzed a triple loss of function mutant of BHLH39, BHLH100 and BHLH101 (3xbhlh mutant). We found that this mutant did not have any iron uptake phenotype if iron was provided. However, under iron deficiency the mutant displayed a more severe leaf chlorosis than the wild type. Microarray-based transcriptome analysis revealed that this mutant phenotype resulted in the mis-regulation of 198 genes, out of which only 15% were associated with iron deficiency regulation itself. A detailed analysis revealed potential targets of the bHLH transcription factors as well as genes reflecting an exaggerated iron deficiency response phenotype. Since the BHLH genes of this subgroup have been brought into the context of the plant hormone salicylic acid, we investigated whether the 3xbhlh mutant might have been affected by this plant signaling molecule. Although a very high number of genes responded to SA, also in a differential manner between mutant and wild type, we did not find any indication for an association of the BHLH gene functions in SA responses upon iron deficiency. In summary, our study indicates that the bHLH subgroup Ib(2) transcription factors do not only act in iron acquisition into roots but in other aspects of the adaptation to iron deficiency in roots and leaves.


Anesthesiology | 2015

Volatile Organic Compounds during Inflammation and Sepsis in Rats: A Potential Breath Test Using Ion-mobility Spectrometry

Tobias Fink; Alexander Wolf; Felix Maurer; Frederic Albrecht; Nathalie Heim; Beate Wolf; Anne-Christin Hauschild; Bertram Bödeker; Jörg Ingo Baumbach; Thomas Volk; Daniel I. Sessler; Sascha Kreuer

Background:Multicapillary column ion-mobility spectrometry (MCC-IMS) may identify volatile components in exhaled gas. The authors therefore used MCC-IMS to evaluate exhaled gas in a rat model of sepsis, inflammation, and hemorrhagic shock. Methods:Male Sprague–Dawley rats were anesthetized and ventilated via tracheostomy for 10 h or until death. Sepsis was induced by cecal ligation and incision in 10 rats; a sham operation was performed in 10 others. In 10 other rats, endotoxemia was induced by intravenous administration of 10 mg/kg lipopolysaccharide. In a final 10 rats, hemorrhagic shock was induced to a mean arterial pressure of 35 ± 5 mmHg. Exhaled gas was analyzed with MCC-IMS, and volatile compounds were identified using the BS-MCC/IMS-analytes database (Version 1209; B&S Analytik, Dortmund, Germany). Results:All sham animals survived the observation period, whereas mean survival time was 7.9 h in the septic animals, 9.1 h in endotoxemic animals, and 2.5 h in hemorrhagic shock. Volatile compounds showed statistically significant differences in septic and endotoxemic rats compared with sham rats for 3-pentanone and acetone. Endotoxic rats differed significantly from sham for 1-propanol, butanal, acetophenone, 1,2-butandiol, and 2-hexanone. Statistically significant differences were observed between septic and endotoxemic rats for butanal, 3-pentanone, and 2-hexanone. 2-Hexanone differed from all other groups in the rats with shock. Conclusions:Breath analysis of expired organic compounds differed significantly in septic, inflammation, and sham rats. MCC-IMS of exhaled breath deserves additional study as a noninvasive approach for distinguishing sepsis from inflammation.


Journal of Breath Research | 2014

Multi-capillary column-ion mobility spectrometer (MCC-IMS) breath analysis in ventilated rats: a model with the feasibility of long-term measurements

Alexander Wolf; Jörg Ingo Baumbach; André G. Kléber; Felix Maurer; Sasidhar Maddula; P Favrod; M Jang; Tobias Fink; Th. Volk; Sascha Kreuer

Rats are commonly used in medical research as they enable a high grade of standardization. The exhalome of ventilated rats has not as yet been investigated using an ion mobility spectrometer coupled with a multi-capillary column (MCC-IMS). As a first step, a rat model has to be established to measure potential biomarkers in the exhale with long-term settings, allowing constant and continuous analysis of exhaled air in time series. Therefore, eight animals were anaesthetized, prepared and ventilated for 1 h. A total of 73 peaks were directly detected with the IMS chromatogram. Thirty five of them were assigned to the ventilator system and 38 to the animals. Peak intensity varied within three measurements. The intensity of analytes of individual rats varied by a factor of up to 18. This new model will also enable continuous measurements of volatile organic compounds (VOCs) from rats breath in long-term experiments. It is hoped that, in the future, variability and progression of VOCs can be monitored in different models of diseases using this set-up.


International Journal for Ion Mobility Spectrometry | 2014

MIMA—a software for analyte identification in MCC/IMS chromatograms by mapping accompanying GC/MS measurements

Felix Maurer; Anne-Christin Hauschild; Kathrin Eisinger; Jan Baumbach; Arno Mayor; Jörg Ingo Baumbach

Ion mobility spectrometry coupled to multi capillary columns (MCC/IMS) combines highly sensitive spectrometry with a rapid separation technique. MCC\IMS is widely used for biomedical breath analysis. The identification of molecules in such a complex sample necessitates a reference database. The existing IMS reference databases are still in their infancy and do not allow to actually identify all analytes. With a gas chromatograph coupled to a mass selective detector (GC/MSD) setup in parallel to a MCC/IMS instrumentation we may increase the accuracy of automatic analyte identification. To overcome the time-consuming manual evaluation and comparison of the results of both devices, we developed a software tool MIMA (MS-IMS-Mapper), which can computationally generate analyte layers for MCC/IMS spectra by using the corresponding GC/MSD data. We demonstrate the power of our method by successfully identifying the analytes of a seven-component mixture. In conclusion, the main contribution of MIMA is a fast and easy computational method for assigning analyte names to yet un-assigned signals in MCC/IMS data. We believe that this will greatly impact modern MCC/IMS-based biomarker research by “giving a name” to previously detected disease-specific molecules.


Scientific Reports | 2017

Dissection of iron signaling and iron accumulation by overexpression of subgroup Ib bHLH039 protein

Maria Augusta Naranjo‐Arcos; Felix Maurer; Johannes Meiser; Stéphanie Pateyron; Claudia Fink-Straube; Petra Bauer

Iron is an essential growth determinant for plants, and plants acquire this micronutrient in amounts they need in their environment. Plants can increase iron uptake in response to a regulatory transcription factor cascade. Arabidopsis thaliana serves as model plant to identify and characterize iron regulation genes. Here, we show that overexpression of subgroup Ib bHLH transcription factor bHLH039 (39Ox) caused constitutive iron acquisition responses, which resulted in enhanced iron contents in leaves and seeds. Transcriptome analysis demonstrated that 39Ox plants displayed simultaneously gene expression patterns characteristic of iron deficiency and iron stress signaling. Thereby, we could dissect iron deficiency response regulation. The transcription factor FIT, which is required to regulate iron uptake, was essential for the 39Ox phenotype. We provide evidence that subgroup Ib transcription factors are involved in FIT transcriptional regulation. Our findings pose interesting questions to the feedback control of iron homeostasis.


Journal of Breath Research | 2017

Adherence of volatile propofol to various types of plastic tubing

Felix Maurer; Dominik Lorenz; G Pielsticker; Th. Volk; Daniel I. Sessler; Jörg Ingo Baumbach; Sascha Kreuer

Propofol is an intravenous anesthetic. Currently, it is not possible to routinely measure blood concentration of the drug in real time. However, multi-capillary column ion-mobility spectrometry of exhaled gas can estimate blood propofol concentration. Unfortunately, adhesion of volatile propofol on plastic materials complicates measurements. Therefore, it is necessary to consider the extent to which volatile propofol adheres to various plastics used in sampling tubing. Perfluoralkoxy (PFA), polytetrafluorethylene (PTFE), polyurethane (PUR), silicone, and Tygon tubing were investigated in an experimental setting using a calibration gas generator (HovaCAL). Propofol gas was measured for one hour at 26 °C, 50 °C, and 90 °C tubing temperature. Test tubing segments were then flushed with N2 to quantify desorption. PUR and Tygon sample tubing absorbed all volatile propofol. The silicone tubing reached the maximum propofol concentration after 119 min which was 29 min after propofol gas exposure stopped. The use of PFA or PTFE tubing produced comparable and reasonably accurate propofol measurements. The desaturation time for the PFA was 10 min shorter at 26 °C than for PTFE. PFA tubing thus seems most suitable for measurement of volatile propofol, with PTFE as an alternative.


Journal of Pharmaceutical and Biomedical Analysis | 2017

Calibration and validation of a MCC/IMS prototype for exhaled propofol online measurement

Felix Maurer; Larissa Walter; Martin Geiger; Jörg Ingo Baumbach; Daniel I. Sessler; Thomas Volk; Sascha Kreuer

HighlightsThe MCC‐IMS calibration yielded an R2 ≥ 0.99 with a linear array from 0 to 20 ppbv.The device has a LOD of 0.1 ppbv and a LOQ of 0.3 ppbv.The imprecision at 20 ppbv is 11.3% and 3.5% at 40 ppbv. Abstract Propofol is a commonly used intravenous general anesthetic. Multi‐capillary column (MCC) coupled Ion‐mobility spectrometry (IMS) can be used to quantify exhaled propofol, and thus estimate plasma drug concentration. Here, we present results of the calibration and analytical validation of a MCC/IMS pre‐market prototype for propofol quantification in exhaled air. Calibration with a reference gas generator yielded an R2 ≥ 0.99 with a linear array for the calibration curve from 0 to 20 ppbv. The limit of quantification was 0.3 ppbv and the limit of detection was 0.1 ppbv. The device is able to distinguish concentration differences > 0.5 ppbv for the concentration range between 2 and 4 ppbv and > 0.9 ppbv for the range between 28 and 30 ppbv. The imprecision at 20 ppbv is 11.3% whereas it is 3.5% at a concentration of 40 ppbv. The carry‐over duration is 3 min. The MCC/IMS we tested provided online quantification of gaseous propofol over the clinically relevant range at measurement frequencies of one measurement each minute.


Journal of Breath Research | 2016

Exhalation of volatile organic compounds during hemorrhagic shock and reperfusion in rats: An exploratory trial

Tobias Hüppe; Dominik Lorenz; Felix Maurer; Frederic Albrecht; Kristina Schnauber; Beate Wolf; Daniel I. Sessler; Thomas Volk; Tobias Fink; Sascha Kreuer

Ischemia and reperfusion alter metabolism. Multi-capillary column ion-mobility spectrometry (MCC-IMS) can identify volatile organic compounds (VOCs) in exhaled gas. We therefore used MCC-IMS to evaluate exhaled gas in a rat model of hemorrhagic shock with reperfusion. Adult male Sprague-Dawley rats (n  =  10 in control group, n  =  15 in intervention group) were anaesthetized and ventilated via tracheostomy for 14 h or until death. Hemorrhagic shock was maintained for 90 min by removing blood from the femoral artery to a target of MAP 35  ±  5 mmHg, and then retransfusing the blood over 60 min in 15 rats; 10 control rats were evaluated without shock and reperfusion. Exhaled gas was analyzed with MCC-IMS, VOCs were identified using the BS-MCC/IMS analytes database (Version 1209). VOC intensities were analyzed at the end of shock, end of reperfusion, and after 9 h. All normotensive animals survived the observation period, whereas mean survival time was 11.2 h in shock and reperfusion animals. 16 VOCs differed significantly for at least one of the three analysis periods. Peak intensities of butanone, 2-ethyl-1-hexanol, nonanal, and an unknown compound were higher in shocked than normotensive rats, and another unknown compound increased over the time. 1-butanol increased only during reperfusion. Acetone, butanal, 1.2-butandiol, isoprene, 3-methylbutanal, 3-pentanone, 2-propanol, and two unknown compounds were lower and decreased during shock and reperfusion. 1-pentanol and 1-propanol were significant greater in the hypotensive animals during shock, were comparable during reperfusion, and then decreased after resuscitation. VOCs differ during hemorrhagic shock, reperfusion, and after reperfusion. MCC-IMS of exhaled breath deserves additional study as a non-invasive approach for monitoring changes in metabolism during ischemia and reperfusion.

Collaboration


Dive into the Felix Maurer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Petra Bauer

University of Düsseldorf

View shared research outputs
Researchain Logo
Decentralizing Knowledge