Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Femke van Wijk is active.

Publication


Featured researches published by Femke van Wijk.


Nature Immunology | 2013

Transcriptional reprogramming of mature CD4 + helper T cells generates distinct MHC class II-restricted cytotoxic T lymphocytes

Daniel Mucida; Mohammad Mushtaq Husain; Sawako Muroi; Femke van Wijk; Ryo Shinnakasu; Yoshinori Naoe; Bernardo S. Reis; Yujun Huang; Florence Lambolez; Michael J. Docherty; Antoine Attinger; Jr-Wen Shui; Gisen Kim; Christopher J. Lena; Shinya Sakaguchi; Chizuko Miyamoto; Peng Wang; Koji Atarashi; Yunji Park; Toshinori Nakayama; Kenya Honda; Wilfried Ellmeier; Mitchell Kronenberg; Ichiro Taniuchi; Hilde Cheroutre

TCRαβ thymocytes differentiate into either CD8αβ+ cytotoxic T lymphocytes or CD4+ helper T cells. This functional dichotomy is controlled by key transcription factors, including the helper T cell master regulator ThPOK, which suppresses the cytolytic program in major histocompatibility complex (MHC) class II–restricted CD4+ thymocytes. ThPOK continues to repress genes of the CD8 lineage in mature CD4+ T cells, even as they differentiate into effector helper T cell subsets. Here we found that the helper T cell fate was not fixed and that mature, antigen-stimulated CD4+ T cells terminated expression of the gene encoding ThPOK and reactivated genes of the CD8 lineage. This unexpected plasticity resulted in the post-thymic termination of the helper T cell program and the functional differentiation of distinct MHC class II–restricted CD4+ cytotoxic T lymphocytes.


Blood | 2011

Functional human regulatory T cells fail to control autoimmune inflammation due to PKB/c-akt hyperactivation in effector cells

Ellen J. Wehrens; Gerdien Mijnheer; Chantal L Duurland; Mark Klein; Jenny Meerding; Jorg van Loosdregt; Wilco de Jager; Birgit Sawitzki; Paul J. Coffer; Bas Vastert; Berent J. Prakken; Femke van Wijk

During the last decade research has focused on the application of FOXP3(+) regulatory T cells (Tregs) in the treatment of autoimmune disease. However, thorough functional characterization of these cells in patients with chronic autoimmune disease, especially at the site of inflammation, is still missing. Here we studied Treg function in patients with juvenile idiopathic arthritis (JIA) and observed that Tregs from the peripheral blood as well as the inflamed joints are fully functional. Nevertheless, Treg-mediated suppression of cell proliferation and cytokine production by effector cells from the site of inflammation was severely impaired, because of resistance to suppression. This resistance to suppression was not caused by a memory phenotype of effector T cells or activation status of antigen presenting cells. Instead, activation of protein kinase B (PKB)/c-akt was enhanced in inflammatory effector cells, at least partially in response to TNFα and IL-6, and inhibition of this kinase restored responsiveness to suppression. We are the first to show that PKB/c-akt hyperactivation causes resistance of effector cells to suppression in human autoimmune disease. Furthermore, these findings suggest that for a Treg enhancing strategy to be successful in the treatment of autoimmune inflammation, resistance because of PKB/c-akt hyperactivation should be targeted as well.


Arthritis & Rheumatism | 2009

Epitope-specific immunotherapy of rheumatoid arthritis: clinical responsiveness occurs with immune deviation and relies on the expression of a cluster of molecules associated with T cell tolerance in a double-blind, placebo-controlled, pilot phase II trial.

Eva Koffeman; Mark C. Genovese; Diane Amox; Elissa Keogh; Ernesto Santana; Eric L. Matteson; Arthur Kavanaugh; Jerry A. Molitor; Michael Schiff; James Posever; Joan M. Bathon; Alan Kivitz; Rodrigo Samodal; Francis Belardi; Carolyn Dennehey; Theo van den Broek; Femke van Wijk; Xiao Zhang; Peter Zieseniss; Tho Le; B Prakken; Gary C. Cutter; Salvatore Albani

OBJECTIVE Induction of immune tolerance to maintain clinical control with a minimal drug regimen is a current research focus in rheumatoid arthritis (RA). Accordingly, we are developing a tolerization approach to dnaJP1, a peptide part of a pathogenic mechanism that contributes to autoimmune inflammation in RA. We undertook this study to test 2 hypotheses: 1) that mucosal induction of immune tolerance to dnaJP1 would lead to a qualitative change from a proinflammatory phenotype to a more tolerogenic functional phenotype, and 2) that immune deviation of responses to an inflammatory epitope might translate into clinical improvement. METHODS One hundred sixty patients with active RA and with immunologic reactivity to dnaJP1 were enrolled in a pilot phase II trial. They received oral doses of 25 mg of dnaJP1 or placebo daily for 6 months. RESULTS The dnaJP1 peptide was safe and well-tolerated. In response to treatment with dnaJP1, there was a significant reduction in the percentage of T cells producing tumor necrosis factor alpha and a corresponding trend toward an increased percentage of T cells producing interleukin-10. Coexpression of a cluster of molecules (programmed death 1 and its ligands) associated with T cell regulation was also found to be a prerequisite for successful tolerization in clinical responders. Analysis of the primary efficacy end point (meeting the American College of Rheumatology 20% improvement criteria at least once on day 112, 140, or 168) showed a difference between treatment groups that became significant in post hoc analysis using generalized estimating equations. Differences in clinical responses were also found between treatment groups on day 140 and at followup. Post hoc analysis showed that the combination of dnaJP1 and hydroxychloroquine (HCQ) was superior to the combination of HCQ and placebo. CONCLUSION Tolerization to dnaJP1 leads to immune deviation and a trend toward clinical efficacy. Susceptibility to treatment relies on the coexpression of molecules that can down-regulate adaptive immunity.


Frontiers in Immunology | 2014

Human dendritic cell functional specialization in steady-state and inflammation

Arjan Boltjes; Femke van Wijk

Dendritic cells (DC) represent a heterogeneous population of antigen-presenting cells that are crucial in initiating and shaping immune responses. Although all DC are capable of antigen-uptake, processing, and presentation to T cells, DC subtypes differ in their origin, location, migration patterns, and specialized immunological roles. While in recent years, there have been rapid advances in understanding DC subset ontogeny, development, and function in mice, relatively little is known about the heterogeneity and functional specialization of human DC subsets, especially in tissues. In steady-state, DC progenitors deriving from the bone marrow give rise to lymphoid organ-resident DC and to migratory tissue DC that act as tissue sentinels. During inflammation additional DC and monocytes are recruited to the tissues where they are further activated and promote T helper cell subset polarization depending on the environment. In the current review, we will give an overview of the latest developments in human DC research both in steady-state and under inflammatory conditions. In this context, we review recent findings on DC subsets, DC-mediated cross-presentation, monocyte-DC relationships, inflammatory DC development, and DC-instructed T-cell polarization. Finally, we discuss the potential role of human DC in chronic inflammatory diseases.


Seminars in Immunology | 2009

Intestinal T cells: Facing the mucosal immune dilemma with synergy and diversity

Femke van Wijk; Hilde Cheroutre

The epithelium of the gastrointestinal tract, which represents the greatest body surface area exposed to the outside environment, is confronted with a plethora of foreign and potentially harmful antigens. Consequently, the immune system of the gut faces the daunting task of distinguishing harmless dietary proteins and commensal bacteria from potentially dangerous pathogens, and of then responding accordingly. Mucosal T cells play a central role in maintaining barrier function and controlling the delicate balance between immune activation and immune tolerance. This review will focus on the unique features of mucosal T cell subsets that reside in the epithelium and lamina propria of the gut.


Nature Reviews Rheumatology | 2013

T cells out of control—impaired immune regulation in the inflamed joint

Ellen J. Wehrens; Berent J. Prakken; Femke van Wijk

Since the discovery of FOXP3+ regulatory T (TREG) cells over 15 years ago, intensive research has focused on their presence, phenotype and function in autoimmune disease. Whether deficiencies in TREG cells underlie autoimmune pathology and whether, or how, therapeutic approaches based on these cells might be successful is still the subject of debate. The potential role of TREG-cell extrinsic factors, such as proinflammatory cytokines and resistance of effector T cells to suppression, as the cause of regulatory defects in chronic autoimmune inflammation is an intensive area of research. It is now clear that, at the site of inflammation, antigen presenting cells (APCs) and proinflammatory cytokines drive effector T cell skewing and plasticity, and that these T cells can become unresponsive to regulation. In addition, expansion and function of TREG cells is affected by the inflammatory environment; indeed, new data suggest that, in certain conditions, TREG cells promote inflammation. This Review summarizes the latest findings on changes in effector T cell homeostasis in autoimmune disease and focuses on how mechanisms that normally regulate these cells are affected in the inflamed joints of patients with arthritis. These findings have important clinical implications and will affect the development of new therapeutic strategies for autoimmune arthritis.


Journal of Immunology | 2005

CTLA-4 signaling regulates the intensity of hypersensitivity responses to food antigens, but is not decisive in the induction of sensitization

Femke van Wijk; Sanne Hoeks; Stefan Nierkens; Stef J. Koppelman; Peter van Kooten; Louis Boon; L.M.J. Knippels; Raymond Pieters

Although food allergy has emerged as a major health problem, the mechanisms that are decisive in the development of sensitization to dietary Ag remain largely unknown. CTLA-4 signaling negatively regulates immune activation, and may play a crucial role in preventing induction and/or progression of sensitization to food Ag. To elucidate the role of CTLA-4 signaling in responses to food allergens, a murine model of peanut allergy was used. During oral exposure to peanut protein extract (PPE) together with the mucosal adjuvant cholera toxin (CT), which induces peanut allergy, CTLA-4 ligation was prevented using a CTLA-4 mAb. Additionally, the effect of inhibition of the CTLA-4 pathway on oral exposure to PPE in the absence of CT, which leads to unresponsiveness to peanut Ag, was explored. During sensitization, anti-CTLA-4 treatment considerably enhanced IgE responses to PPE and the peanut allergens, Ara h 1, Ara h 3, and Ara h 6, resulting in elevated mast cell degranulation upon an oral challenge. Remarkably, antagonizing CTLA-4 during exposure to PPE in the absence of CT resulted in significant induction of Th2 cytokines and an elevation in total serum IgE levels, but failed to induce allergen-specific IgE responses and mast cell degranulation upon a PPE challenge. These results indicate that CTLA-4 signaling is not the crucial factor in preventing sensitization to food allergens, but plays a pivotal role in regulating the intensity of a food allergic sensitization response. Furthermore, these data indicate that a profoundly Th2-biased cytokine environment is insufficient to induce allergic responses against dietary Ag.


Blood | 2016

Autologous stem cell transplantation aids autoimmune patients by functional renewal and TCR diversification of regulatory T cells

Eveline M. Delemarre; Theo van den Broek; Gerdien Mijnheer; Jenny Meerding; Ellen J. Wehrens; Sven Olek; Marianne Boes; Martijn J. C. van Herwijnen; Femke Broere; Annet van Royen; Nico Wulffraat; Berent J. Prakken; Eric Spierings; Femke van Wijk

Autologous hematopoietic stem cell transplantation (HSCT) is increasingly considered for patients with severe autoimmune diseases whose prognosis is poor with standard treatments. Regulatory T cells (Tregs) are thought to be important for disease remission after HSCT. However, eliciting the role of donor and host Tregs in autologous HSCT is not possible in humans due to the autologous nature of the intervention. Therefore, we investigated their role during immune reconstitution and re-establishment of immune tolerance and their therapeutic potential following congenic bone marrow transplantation (BMT) in a proteoglycan-induced arthritis (PGIA) mouse model. In addition, we determined Treg T-cell receptor (TCR) CDR3 diversity before and after HSCT in patients with juvenile idiopathic arthritis and juvenile dermatomyositis. In the PGIA BMT model, after an initial predominance of host Tregs, graft-derived Tregs started dominating and displayed a more stable phenotype with better suppressive capacity. Patient samples revealed a striking lack of diversity of the Treg repertoire before HSCT. This ameliorated after HSCT, confirming reset of the Treg compartment following HSCT. In the mouse model, a therapeutic approach was initiated by infusing extra Foxp3(GFP+) Tregs during BMT. Infusion of Foxp3(GFP+) Tregs did not elicit additional clinical improvement but conversely delayed reconstitution of the graft-derived T-cell compartment. These data indicate that HSCT-mediated amelioration of autoimmune disease involves renewal of the Treg pool. In addition, infusion of extra Tregs during BMT results in a delayed reconstitution of T-cell compartments. Therefore, Treg therapy may hamper development of long-term tolerance and should be approached with caution in the clinical autologous setting.


Journal of Clinical Investigation | 2016

Neonatal thymectomy reveals differentiation and plasticity within human naive T cells

Theo van den Broek; Eveline M. Delemarre; Willemijn J.M. Janssen; Rutger A.J. Nievelstein; Jasper C. Broen; Kiki Tesselaar; José A. M. Borghans; Edward E. S. Nieuwenhuis; Berent J. Prakken; Michal Mokry; Nicolaas J. G. Jansen; Femke van Wijk

The generation of naive T cells is dependent on thymic output, but in adults, the naive T cell pool is primarily maintained by peripheral proliferation. Naive T cells have long been regarded as relatively quiescent cells; however, it was recently shown that IL-8 production is a signatory effector function of naive T cells, at least in newborns. How this functional signature relates to naive T cell dynamics and aging is unknown. Using a cohort of children and adolescents who underwent neonatal thymectomy, we demonstrate that the naive CD4+ T cell compartment in healthy humans is functionally heterogeneous and that this functional diversity is lost after neonatal thymectomy. Thymic tissue regeneration later in life resulted in functional restoration of the naive T cell compartment, implicating the thymus as having functional regenerative capacity. Together, these data shed further light on functional differentiation within the naive T cell compartment and the importance of the thymus in human naive T cell homeostasis and premature aging. In addition, these results affect and alter our current understanding on the identification of truly naive T cells and recent thymic emigrants.


PLOS ONE | 2012

STAT3 regulates monocyte TNF-alpha production in systemic inflammation caused by cardiac surgery with cardiopulmonary bypass.

Petrus R. de Jong; Alvin W. L. Schadenberg; Theo van den Broek; Jeffrey M. Beekman; Femke van Wijk; Paul J. Coffer; Berent J. Prakken; Nicolaas J. G. Jansen

Background Cardiopulmonary bypass (CPB) surgery initiates a controlled systemic inflammatory response characterized by a cytokine storm, monocytosis and transient monocyte activation. However, the responsiveness of monocytes to Toll-like receptor (TLR)-mediated activation decreases throughout the postoperative course. The purpose of this study was to identify the major signaling pathway involved in plasma-mediated inhibition of LPS-induced tumor necrosis factor (TNF)-α production by monocytes. Methodology/Principal Findings Pediatric patients that underwent CPB-assisted surgical correction of simple congenital heart defects were enrolled (n = 38). Peripheral blood mononuclear cells (PBMC) and plasma samples were isolated at consecutive time points. Patient plasma samples were added back to monocytes obtained pre-operatively for ex vivo LPS stimulations and TNF-α and IL-6 production was measured by flow cytometry. LPS-induced p38 mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB activation by patient plasma was assessed by Western blotting. A cell-permeable peptide inhibitor was used to block STAT3 signaling. We found that plasma samples obtained 4 h after surgery, regardless of pre-operative dexamethasone treatment, potently inhibited LPS-induced TNF-α but not IL-6 synthesis by monocytes. This was not associated with attenuation of p38 MAPK activation or IκB-α degradation. However, abrogation of the IL-10/STAT3 pathway restored LPS-induced TNF-α production in the presence of suppressive patient plasma. Conclusions/Significance Our findings suggest that STAT3 signaling plays a crucial role in the downregulation of TNF-α synthesis by human monocytes in the course of systemic inflammation in vivo. Thus, STAT3 might be a potential molecular target for pharmacological intervention in clinical syndromes characterized by systemic inflammation.

Collaboration


Dive into the Femke van Wijk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge