Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fen Z. Hu is active.

Publication


Featured researches published by Fen Z. Hu.


Journal of Bacteriology | 2007

Comparative Genomic Analyses of Seventeen Streptococcus pneumoniae Strains: Insights into the Pneumococcal Supragenome

N. Luisa Hiller; Benjamin Janto; Justin S. Hogg; Robert Boissy; Susan Yu; Evan Powell; Randy Keefe; Nathan Ehrlich; Kai Shen; Jay Hayes; Karen A. Barbadora; William Klimke; Dmitry Dernovoy; Tatiana Tatusova; Julian Parkhill; Stephen D. Bentley; J. Christopher Post; Garth D. Ehrlich; Fen Z. Hu

The distributed-genome hypothesis (DGH) states that pathogenic bacteria possess a supragenome that is much larger than the genome of any single bacterium and that these pathogens utilize genetic recombination and a large, noncore set of genes as a means of diversity generation. We sequenced the genomes of eight nasopharyngeal strains of Streptococcus pneumoniae isolated from pediatric patients with upper respiratory symptoms and performed quantitative genomic analyses among these and nine publicly available pneumococcal strains. Coding sequences from all strains were grouped into 3,170 orthologous gene clusters, of which 1,454 (46%) were conserved among all 17 strains. The majority of the gene clusters, 1,716 (54%), were not found in all strains. Genic differences per strain pair ranged from 35 to 629 orthologous clusters, with each strains genome containing between 21 and 32% noncore genes. The distribution of the orthologous clusters per genome for the 17 strains was entered into the finite-supragenome model, which predicted that (i) the S. pneumoniae supragenome contains more than 5,000 orthologous clusters and (ii) 99% of the orthologous clusters ( approximately 3,000) that are represented in the S. pneumoniae population at frequencies of >or=0.1 can be identified if 33 representative genomes are sequenced. These extensive genic diversity data support the DGH and provide a basis for understanding the great differences in clinical phenotype associated with various pneumococcal strains. When these findings are taken together with previous studies that demonstrated the presence of a supragenome for Streptococcus agalactiae and Haemophilus influenzae, it appears that the possession of a distributed genome is a common host interaction strategy.


Genome Biology | 2010

Structure and dynamics of the pan-genome of Streptococcus pneumoniae and closely related species

Claudio Donati; N. Luisa Hiller; Hervé Tettelin; Alessandro Muzzi; Nicholas J. Croucher; Samuel V. Angiuoli; Marco R. Oggioni; Julie C. Dunning Hotopp; Fen Z. Hu; David R. Riley; Antonello Covacci; Timothy J. Mitchell; Stephen D. Bentley; Morgens Kilian; Garth D. Ehrlich; Rino Rappuoli; E. Richard Moxon; Vega Masignani

BackgroundStreptococcus pneumoniae is one of the most important causes of microbial diseases in humans. The genomes of 44 diverse strains of S. pneumoniae were analyzed and compared with strains of non-pathogenic streptococci of the Mitis group.ResultsDespite evidence of extensive recombination, the S. pneumoniae phylogenetic tree revealed six major lineages. With the exception of serotype 1, the tree correlated poorly with capsular serotype, geographical site of isolation and disease outcome. The distribution of dispensable genes - genes present in more than one strain but not in all strains - was consistent with phylogeny, although horizontal gene transfer events attenuated this correlation in the case of ancient lineages. Homologous recombination, involving short stretches of DNA, was the dominant evolutionary process of the core genome of S. pneumoniae. Genetic exchange occurred both within and across the borders of the species, and S. mitis was the main reservoir of genetic diversity of S. pneumoniae. The pan-genome size of S. pneumoniae increased logarithmically with the number of strains and linearly with the number of polymorphic sites of the sampled genomes, suggesting that acquired genes accumulate proportionately to the age of clones. Most genes associated with pathogenicity were shared by all S. pneumoniae strains, but were also present in S. mitis, S. oralis and S. infantis, indicating that these genes are not sufficient to determine virulence.ConclusionsGenetic exchange with related species sharing the same ecological niche is the main mechanism of evolution of S. pneumoniae. The open pan-genome guarantees the species a quick and economical response to diverse environments.


Genome Biology | 2007

Characterization and modeling of the Haemophilus influenzae core and supragenomes based on the complete genomic sequences of Rd and 12 clinical nontypeable strains

Justin S. Hogg; Fen Z. Hu; Benjamin Janto; Robert Boissy; Jay Hayes; Randy Keefe; J. Christopher Post; Garth D. Ehrlich

BackgroundThe distributed genome hypothesis (DGH) posits that chronic bacterial pathogens utilize polyclonal infection and reassortment of genic characters to ensure persistence in the face of adaptive host defenses. Studies based on random sequencing of multiple strain libraries suggested that free-living bacterial species possess a supragenome that is much larger than the genome of any single bacterium.ResultsWe derived high depth genomic coverage of nine nontypeable Haemophilus influenzae (NTHi) clinical isolates, bringing to 13 the number of sequenced NTHi genomes. Clustering identified 2,786 genes, of which 1,461 were common to all strains, with each of the remaining 1,328 found in a subset of strains; the number of clusters ranged from 1,686 to 1,878 per strain. Genic differences of between 96 and 585 were identified per strain pair. Comparisons of each of the NTHi strains with the Rd strain revealed between 107 and 158 insertions and 100 and 213 deletions per genome. The mean insertion and deletion sizes were 1,356 and 1,020 base-pairs, respectively, with mean maximum insertions and deletions of 26,977 and 37,299 base-pairs. This relatively large number of small rearrangements among strains is in keeping with what is known about the transformation mechanisms in this naturally competent pathogen.ConclusionA finite supragenome model was developed to explain the distribution of genes among strains. The model predicts that the NTHi supragenome contains between 4,425 and 6,052 genes with most uncertainty regarding the number of rare genes, those that have a frequency of <0.1 among strains; collectively, these results support the DGH.


BMC Infectious Diseases | 2013

The microbiome of chronic rhinosinusitis: culture, molecular diagnostics and biofilm detection

Sam Boase; Andrew Foreman; Edward John Cleland; Lorwai Tan; Rachel Melton-Kreft; Harshita Pant; Fen Z. Hu; Garth D. Ehrlich; Peter-John Wormald

BackgroundBacteria and fungi are believed to influence mucosal inflammation in chronic rhinosinusitis (CRS). However their presence and relationship to disease is debated. This study used multiple detection methods to compare microbial diversity and microbial abundance in healthy and diseased sinonasal mucosa. The utility of contemporary detection methods is also examined.MethodsSinonasal mucosa was analyzed from 38 CRS and 6 controls. Bacterial and fungal analysis was performed using conventional culture, molecular diagnostics (polymerase chain reaction coupled with electrospray ionization time-of-flight mass spectrometry) and fluorescence in situ hybridization.ResultsMicrobes were detected in all samples, including controls, and were often polymicrobial. 33 different bacterial species were detected in CRS, 5 in control patients, with frequent recovery of anaerobes. Staphylococcus aureus and Propionibacterium acnes were the most common organisms in CRS and controls, respectively. Using a model organism, FISH had a sensitivity of 78%, and a specificity of 93%. Many species were detected in both CRS and controls however, microbial abundance was associated with disease manifestation.ConclusionsThis study highlights some cornerstones of microbial variations in healthy and diseased paranasal sinuses. Whilst the healthy sinus is clearly not sterile, it appears prevalence and abundance of organisms is critical in determining disease. Evidence from high-sensitivity techniques, limits the role of fungi in CRS to a small group of patients. Comparison with molecular analysis suggests that the detection threshold of FISH and culture is related to organism abundance and, furthermore, culture tends to select for rapidly growing organisms.


PLOS Biology | 2007

Insights into the genome of large sulfur bacteria revealed by analysis of single filaments.

Marc Mußmann; Fen Z. Hu; Michael Richter; Dirk de Beer; André Preisler; Bo Barker Jørgensen; Marcel Huntemann; Frank Oliver Glöckner; Rudolf Amann; Werner J.H. Koopman; Roger S. Lasken; Benjamin Janto; Justin S. Hogg; Paul Stoodley; Robert Boissy; Garth D. Ehrlich

Marine sediments are frequently covered by mats of the filamentous Beggiatoa and other large nitrate-storing bacteria that oxidize hydrogen sulfide using either oxygen or nitrate, which they store in intracellular vacuoles. Despite their conspicuous metabolic properties and their biogeochemical importance, little is known about their genetic repertoire because of the lack of pure cultures. Here, we present a unique approach to access the genome of single filaments of Beggiatoa by combining whole genome amplification, pyrosequencing, and optical genome mapping. Sequence assemblies were incomplete and yielded average contig sizes of approximately 1 kb. Pathways for sulfur oxidation, nitrate and oxygen respiration, and CO2 fixation confirm the chemolithoautotrophic physiology of Beggiatoa. In addition, Beggiatoa potentially utilize inorganic sulfur compounds and dimethyl sulfoxide as electron acceptors. We propose a mechanism of vacuolar nitrate accumulation that is linked to proton translocation by vacuolar-type ATPases. Comparative genomics indicates substantial horizontal gene transfer of storage, metabolic, and gliding capabilities between Beggiatoa and cyanobacteria. These capabilities enable Beggiatoa to overcome non-overlapping availabilities of electron donors and acceptors while gliding between oxic and sulfidic zones. The first look into the genome of these filamentous sulfur-oxidizing bacteria substantially deepens the understanding of their evolution and their contribution to sulfur and nitrogen cycling in marine sediments.


ACS Chemical Biology | 2011

Meta-omic characterization of the marine invertebrate microbial consortium that produces the chemotherapeutic natural product ET-743.

Christopher M. Rath; Benjamin Janto; Josh Earl; Azad Ahmed; Fen Z. Hu; Luisa Hiller; Meg Dahlgren; Rachael Kreft; Fengan Yu; J. Jens Wolff; Hye Kyong Kweon; Mike A Christiansen; Kristina Håkansson; Robert M. Williams; Garth D. Ehrlich; David H. Sherman

In many macroorganisms, the ultimate source of potent biologically active natural products has remained elusive due to an inability to identify and culture the producing symbiotic microorganisms. As a model system for developing a meta-omic approach to identify and characterize natural product pathways from invertebrate-derived microbial consortia, we chose to investigate the ET-743 (Yondelis) biosynthetic pathway. This molecule is an approved anticancer agent obtained in low abundance (10(-4)-10(-5) % w/w) from the tunicate Ecteinascidia turbinata and is generated in suitable quantities for clinical use by a lengthy semisynthetic process. On the basis of structural similarities to three bacterial secondary metabolites, we hypothesized that ET-743 is the product of a marine bacterial symbiont. Using metagenomic sequencing of total DNA from the tunicate/microbial consortium, we targeted and assembled a 35 kb contig containing 25 genes that comprise the core of the NRPS biosynthetic pathway for this valuable anticancer agent. Rigorous sequence analysis based on codon usage of two large unlinked contigs suggests that Candidatus Endoecteinascidia frumentensis produces the ET-743 metabolite. Subsequent metaproteomic analysis confirmed expression of three key biosynthetic proteins. Moreover, the predicted activity of an enzyme for assembly of the tetrahydroisoquinoline core of ET-743 was verified in vitro. This work provides a foundation for direct production of the drug and new analogues through metabolic engineering. We expect that the interdisciplinary approach described is applicable to diverse host-symbiont systems that generate valuable natural products for drug discovery and development.


PLOS Pathogens | 2010

Generation of Genic Diversity among Streptococcus pneumoniae Strains via Horizontal Gene Transfer during a Chronic Polyclonal Pediatric Infection

N. Luisa Hiller; Azad Ahmed; Evan Powell; Darren P. Martin; Rory A. Eutsey; Joshua P. Earl; Benjamin Janto; Robert Boissy; Justin S. Hogg; Karen A. Barbadora; Rangarajan Sampath; Shaun Lonergan; J. Christopher Post; Fen Z. Hu; Garth D. Ehrlich

Although there is tremendous interest in understanding the evolutionary roles of horizontal gene transfer (HGT) processes that occur during chronic polyclonal infections, to date there have been few studies that directly address this topic. We have characterized multiple HGT events that most likely occurred during polyclonal infection among nasopharyngeal strains of Streptococcus pneumoniae recovered from a child suffering from chronic upper respiratory and middle-ear infections. Whole genome sequencing and comparative genomics were performed on six isolates collected during symptomatic episodes over a period of seven months. From these comparisons we determined that five of the isolates were genetically highly similar and likely represented a dominant lineage. We analyzed all genic and allelic differences among all six isolates and found that all differences tended to occur within contiguous genomic blocks, suggestive of strain evolution by homologous recombination. From these analyses we identified three strains (two of which were recovered on two different occasions) that appear to have been derived sequentially, one from the next, each by multiple recombination events. We also identified a fourth strain that contains many of the genomic segments that differentiate the three highly related strains from one another, and have hypothesized that this fourth strain may have served as a donor multiple times in the evolution of the dominant strain line. The variations among the parent, daughter, and grand-daughter recombinant strains collectively cover greater than seven percent of the genome and are grouped into 23 chromosomal clusters. While capturing in vivo HGT, these data support the distributed genome hypothesis and suggest that a single competence event in pneumococci can result in the replacement of DNA at multiple non-adjacent loci.


Fems Immunology and Medical Microbiology | 2011

New methods for the detection of orthopedic and other biofilm infections

John William Costerton; James Christopher Post; Garth D. Ehrlich; Fen Z. Hu; Rachael Kreft; Laura Nistico; Sandeep Kathju; Paul Stoodley; Luanne Hall-Stoodley; Gerhard Maale; Garth A. James; Nick Sotereanos; Patrick J. DeMeo

The detection and identification of bacteria present in natural and industrial ecosystems is now entirely based on molecular systems that detect microbial RNA or DNA. Culture methods were abandoned, in the 1980s, because direct observations showed that <1% of the bacteria in these systems grew on laboratory media. Culture methods comprise the backbone of the Food and Drug Administration-approved diagnostic systems used in hospital laboratories, with some molecular methods being approved for the detection of specific pathogens that are difficult to grow in vitro. In several medical specialties, the reaction to negative cultures in cases in which overt signs of infection clearly exist has produced a spreading skepticism concerning the sensitivity and accuracy of traditional culture methods. We summarize evidence from the field of orthopedic surgery, and from other medical specialties, that support the contention that culture techniques are especially insensitive and inaccurate in the detection of chronic biofilm infections. We examine the plethora of molecular techniques that could replace cultures in the diagnosis of bacterial diseases, and we identify the new Ibis technique that is based on base ratios (not base sequences), as the molecular system most likely to fulfill the requirements of routine diagnosis in orthopedic surgery.


BMC Medical Genomics | 2008

Identification of differentially expressed genes in fibroblasts derived from patients with Dupuytren's Contracture

Latha Satish; William A. LaFramboise; David B O'Gorman; Sandra Johnson; Benjamin Janto; Bing Siang Gan; Mark E. Baratz; Fen Z. Hu; J. Christopher Post; Garth D. Ehrlich; Sandeep Kathju

Dupuytrens contracture (DC) is the most common inherited connective tissue disease of humans and is hypothesized to be associated with aberrant wound healing of the palmar fascia. Fibroblasts and myofibroblasts are believed to play an important role in the genesis of DC and the fibroproliferation and contraction that are hallmarks of this disease. This study compares the gene expression profiles of fibroblasts isolated from DC patients and controls in an attempt to identify key genes whose regulation might be significantly altered in fibroblasts found within the palmar fascia of Dupuytrens patients. Total RNA isolated from diseased palmar fascia (DC) and normal palmar fascia (obtained during carpal tunnel release; 6 samples per group) was subjected to quantitative analyses using two different microarray platforms (GE Code Link™ and Illumina™) to identify and validate differentially expressed genes. The data obtained was analyzed using The Significance Analysis of Microarrays (SAM) software through which we identified 69 and 40 differentially regulated gene transcripts using the CodeLink™ and Illumina™ platforms, respectively. The CodeLink™ platform identified 18 upregulated and 51 downregulated genes. Using the Illumina™ platform, 40 genes were identified as downregulated, eleven of which were identified by both platforms. Quantitative RT-PCR confirmed the downregulation of three high-interest candidate genes which are all components of the extracellular matrix: proteoglycan 4 (PRG4), fibulin-1 (FBLN-1) transcript variant D, and type XV collagen alpha 1 chain. Overall, our study has identified a variety of candidate genes that may be involved in the pathophysiology of Dupuytrens contracture and may ultimately serve as attractive molecular targets for alternative therapies.


Journal of Bacteriology | 2012

Comparative Genomic Analyses of 17 Clinical Isolates of Gardnerella vaginalis Provide Evidence of Multiple Genetically Isolated Clades Consistent with Subspeciation into Genovars

Azad Ahmed; Joshua P. Earl; Adam Retchless; Sharon L. Hillier; Lorna K. Rabe; Thomas L. Cherpes; Evan Powell; Benjamin Janto; Rory A. Eutsey; N. Luisa Hiller; Robert Boissy; Margaret E. Dahlgren; Barry G. Hall; J. William Costerton; J. Christopher Post; Fen Z. Hu; Garth D. Ehrlich

Gardnerella vaginalis is associated with a spectrum of clinical conditions, suggesting high degrees of genetic heterogeneity among stains. Seventeen G. vaginalis isolates were subjected to a battery of comparative genomic analyses to determine their level of relatedness. For each measure, the degree of difference among the G. vaginalis strains was the highest observed among 23 pathogenic bacterial species for which at least eight genomes are available. Genome sizes ranged from 1.491 to 1.716 Mb; GC contents ranged from 41.18% to 43.40%; and the core genome, consisting of only 746 genes, makes up only 51.6% of each strains genome on average and accounts for only 27% of the species supragenome. Neighbor-grouping analyses, using both distributed gene possession data and core gene allelic data, each identified two major sets of strains, each of which is composed of two groups. Each of the four groups has its own characteristic genome size, GC ratio, and greatly expanded core gene content, making the genomic diversity of each group within the range for other bacterial species. To test whether these 4 groups corresponded to genetically isolated clades, we inferred the phylogeny of each distributed gene that was present in at least two strains and absent in at least two strains; this analysis identified frequent homologous recombination within groups but not between groups or sets. G. vaginalis appears to include four nonrecombining groups/clades of organisms with distinct gene pools and genomic properties, which may confer distinct ecological properties. Consequently, it may be appropriate to treat these four groups as separate species.

Collaboration


Dive into the Fen Z. Hu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin Janto

Allegheny General Hospital

View shared research outputs
Top Co-Authors

Avatar

N. Luisa Hiller

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Azad Ahmed

Allegheny General Hospital

View shared research outputs
Top Co-Authors

Avatar

Evan Powell

Allegheny General Hospital

View shared research outputs
Top Co-Authors

Avatar

Joshua P. Earl

Allegheny General Hospital

View shared research outputs
Top Co-Authors

Avatar

Robert Boissy

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Rory A. Eutsey

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge