Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Feng Shao is active.

Publication


Featured researches published by Feng Shao.


Nature | 2011

The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus

Yue Zhao; Jieling Yang; Jianjin Shi; Yi-Nan Gong; Qiuhe Lu; Hao Xu; Liping Liu; Feng Shao

Inflammasomes are large cytoplasmic complexes that sense microbial infections/danger molecules and induce caspase-1 activation-dependent cytokine production and macrophage inflammatory death. The inflammasome assembled by the NOD-like receptor (NLR) protein NLRC4 responds to bacterial flagellin and a conserved type III secretion system (TTSS) rod component. How the NLRC4 inflammasome detects the two bacterial products and the molecular mechanism of NLRC4 inflammasome activation are not understood. Here we show that NAIP5, a BIR-domain NLR protein required for Legionella pneumophila replication in mouse macrophages, is a universal component of the flagellin–NLRC4 pathway. NAIP5 directly and specifically interacted with flagellin, which determined the inflammasome-stimulation activities of different bacterial flagellins. NAIP5 engagement by flagellin promoted a physical NAIP5–NLRC4 association, rendering full reconstitution of a flagellin-responsive NLRC4 inflammasome in non-macrophage cells. The related NAIP2 functioned analogously to NAIP5, serving as a specific inflammasome receptor for TTSS rod proteins such as Salmonella PrgJ and Burkholderia BsaK. Genetic analysis of Chromobacterium violaceum infection revealed that the TTSS needle protein CprI can stimulate NLRC4 inflammasome activation in human macrophages. Similarly, CprI is specifically recognized by human NAIP, the sole NAIP family member in human. The finding that NAIP proteins are inflammasome receptors for bacterial flagellin and TTSS apparatus components further predicts that the remaining NAIP family members may recognize other unidentified microbial products to activate NLRC4 inflammasome-mediated innate immunity.


Nature | 2015

Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death

Jianjin Shi; Yue Zhao; Kun Wang; Xuyan Shi; Yue Wang; Huanwei Huang; Yinghua Zhuang; Tao Cai; Fengchao Wang; Feng Shao

Inflammatory caspases (caspase-1, -4, -5 and -11) are critical for innate defences. Caspase-1 is activated by ligands of various canonical inflammasomes, and caspase-4, -5 and -11 directly recognize bacterial lipopolysaccharide, both of which trigger pyroptosis. Despite the crucial role in immunity and endotoxic shock, the mechanism for pyroptosis induction by inflammatory caspases is unknown. Here we identify gasdermin D (Gsdmd) by genome-wide clustered regularly interspaced palindromic repeat (CRISPR)-Cas9 nuclease screens of caspase-11- and caspase-1-mediated pyroptosis in mouse bone marrow macrophages. GSDMD-deficient cells resisted the induction of pyroptosis by cytosolic lipopolysaccharide and known canonical inflammasome ligands. Interleukin-1β release was also diminished in Gsdmd−/− cells, despite intact processing by caspase-1. Caspase-1 and caspase-4/5/11 specifically cleaved the linker between the amino-terminal gasdermin-N and carboxy-terminal gasdermin-C domains in GSDMD, which was required and sufficient for pyroptosis. The cleavage released the intramolecular inhibition on the gasdermin-N domain that showed intrinsic pyroptosis-inducing activity. Other gasdermin family members were not cleaved by inflammatory caspases but shared the autoinhibition; gain-of-function mutations in Gsdma3 that cause alopecia and skin defects disrupted the autoinhibition, allowing its gasdermin-N domain to trigger pyroptosis. These findings offer insight into inflammasome-mediated immunity/diseases and also change our understanding of pyroptosis and programmed necrosis.


Nature | 2014

Inflammatory caspases are innate immune receptors for intracellular LPS

Jianjin Shi; Yue Zhao; Yupeng Wang; Wenqing Gao; Jingjin Ding; Peng Li; Liyan Hu; Feng Shao

The murine caspase-11 non-canonical inflammasome responds to various bacterial infections. Caspase-11 activation-induced pyroptosis, in response to cytoplasmic lipopolysaccharide (LPS), is critical for endotoxic shock in mice. The mechanism underlying cytosolic LPS sensing and the responsible pattern recognition receptor are unknown. Here we show that human monocytes, epithelial cells and keratinocytes undergo necrosis upon cytoplasmic delivery of LPS. LPS-induced cytotoxicity was mediated by human caspase-4 that could functionally complement murine caspase-11. Human caspase-4 and the mouse homologue caspase-11 (hereafter referred to as caspase-4/11) and also human caspase-5, directly bound to LPS and lipid A with high specificity and affinity. LPS associated with endogenous caspase-11 in pyroptotic cells. Insect-cell purified caspase-4/11 underwent oligomerization upon LPS binding, resulting in activation of the caspases. Underacylated lipid IVa and lipopolysaccharide from Rhodobacter sphaeroides (LPS-RS) could bind to caspase-4/11 but failed to induce their oligomerization and activation. LPS binding was mediated by the CARD domain of the caspase. Binding-deficient CARD-domain point mutants did not respond to LPS with oligomerization or activation and failed to induce pyroptosis upon LPS electroporation or bacterial infections. The function of caspase-4/5/11 represents a new mode of pattern recognition in immunity and also an unprecedented means of caspase activation.


Cell | 2002

A Yersinia effector and a Pseudomonas avirulence protein define a family of cysteine proteases functioning in bacterial pathogenesis.

Feng Shao; Peter M. Merritt; Zhaoqin Bao; Roger W. Innes; Jack E. Dixon

A Yersinia effector known as YopT and a Pseudomonas avirulence protein known as AvrPphB define a family of 19 proteins involved in bacterial pathogenesis. We show that both YopT and AvrPphB are cysteine proteases, and their proteolytic activities are dependent upon the invariant C/H/D residues conserved in the entire YopT family. YopT cleaves the posttranslationally modified Rho GTPases near their carboxyl termini, releasing them from the membrane. This leads to the disruption of actin cytoskeleton in host cells. The proteolytic activity of AvrPphB is essential for autoproteolytic cleavage of an AvrPphB precursor as well as for eliciting the hypersensitive response in plants. These findings provide new insights into mechanisms of animal and plant pathogenesis.


Science | 2007

The Phosphothreonine Lyase Activity of a Bacterial Type III Effector Family

Hongtao Li; Hao Xu; Yan Zhou; Jie Zhang; Chengzu Long; Shuqin Li; She Chen; Jian-Min Zhou; Feng Shao

Pathogenic bacteria use the type III secretion system to deliver effector proteins into host cells to modulate the host signaling pathways. In this study, the Shigella type III effector OspF was shown to inactivate mitogen-activated protein kinases (MAPKs) [extracellular signal–regulated kinases 1 and 2 (Erk1/2), c-Jun N-terminal kinase, and p38]. OspF irreversibly removed phosphate groups from the phosphothreonine but not from the phosphotyrosine residue in the activation loop of MAPKs. Mass spectrometry revealed a mass loss of 98 daltons in p-Erk2, due to the abstraction of the α proton concomitant with cleavage of the C-OP bond in the phosphothreonine residue. This unexpected enzymatic activity, termed phosphothreonine lyase, appeared specific for MAPKs and was shared by other OspF family members.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3–mediated pathway

Sudan He; Yuqiong Liang; Feng Shao; Xiaodong Wang

We report here that mouse macrophages undergo receptor-interacting kinase-3 (RIP3)-dependent but TNF-α–independent necrosis when Toll-like receptors (TLR) 3 and 4 are activated by poly(I:C) and LPS, respectively. An adaptor protein, Toll/IL-1 receptor domain-containing adapter inducing IFN-β (TRIF/TICAM-1), which is dispensable for TNF-α–induced necrosis, forms a complex with RIP3 upon TLR3/TLR4 activation and is essential for TLR3/TLR4-induced necrosis. Mice without RIP3 or functional TRIF did not show macrophage loss and elevation of inflammatory cytokines when they were exposed to LPS. Necrosis in mouse macrophages induced by either TNFR or TLR3/TLR4 is executed by reactive oxygen species. Taken together, these data indicate that there are multiple upstream necrosis-initiating signaling pathways converging on the RIP3 during an innate immune response to viral and bacterial infections in mammals.


Nature | 2014

Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome

Hao Xu; Jieling Yang; Wenqing Gao; Lin Li; Peng Li; Li Zhang; Yi-Nan Gong; Xiaolan Peng; Jianzhong Jeff Xi; She Chen; Fengchao Wang; Feng Shao

Cytosolic inflammasome complexes mediated by a pattern recognition receptor (PRR) defend against pathogen infection by activating caspase 1. Pyrin, a candidate PRR, can bind to the inflammasome adaptor ASC to form a caspase 1-activating complex. Mutations in the Pyrin-encoding gene, MEFV, cause a human autoinflammatory disease known as familial Mediterranean fever. Despite important roles in immunity and disease, the physiological function of Pyrin remains unknown. Here we show that Pyrin mediates caspase 1 inflammasome activation in response to Rho-glucosylation activity of cytotoxin TcdB, a major virulence factor of Clostridium difficile, which causes most cases of nosocomial diarrhoea. The glucosyltransferase-inactive TcdB mutant loses the inflammasome-stimulating activity. Other Rho-inactivating toxins, including FIC-domain adenylyltransferases (Vibrio parahaemolyticus VopS and Histophilus somni IbpA) and Clostridium botulinum ADP-ribosylating C3 toxin, can also biochemically activate the Pyrin inflammasome in their enzymatic activity-dependent manner. These toxins all target the Rho subfamily and modify a switch-I residue. We further demonstrate that Burkholderia cenocepacia inactivates RHOA by deamidating Asn 41, also in the switch-I region, and thereby triggers Pyrin inflammasome activation, both of which require the bacterial type VI secretion system (T6SS). Loss of the Pyrin inflammasome causes elevated intra-macrophage growth of B. cenocepacia and diminished lung inflammation in mice. Thus, Pyrin functions to sense pathogen modification and inactivation of Rho GTPases, representing a new paradigm in mammalian innate immunity.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation

Jieling Yang; Yue Zhao; Jianjin Shi; Feng Shao

Significance Our analyses uncover general immunogenic activity of bacterial T3SS needle protein and identify human NAIP and mouse NAIP1 as cytosolic innate immune sensors of bacterial T3SS needle protein. These results, together with our previous studies, establish a complete framework for understanding NLRC4-mediated detection of bacterial virulence products by the NAIP family inflammasome receptors. The inflammasome-stimulating activity of bacterial T3SS needle proteins and the difference between mouse and human NAIP inflammasome also may provide guidance in vaccine development. Inflammasome mediated by central nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) protein is critical for defense against bacterial infection. Here we show that type III secretion system (T3SS) needle proteins from several bacterial pathogens, including Salmonella typhimurium, enterohemorrhagic Escherichia coli, Shigella flexneri, and Burkholderia spp., can induce robust inflammasome activation in both human monocyte-derived and mouse bone marrow macrophages. Needle protein activation of human NRL family CARD domain containing 4 (NLRC4) inflammasome requires the sole human neuronal apoptosis inhibitory protein (hNAIP). Among the seven mouse NAIPs, NAIP1 functions as the mouse counterpart of hNAIP. We found that NAIP1 recognition of T3SS needle proteins was more robust in mouse dendritic cells than in bone marrow macrophages. Needle proteins, as well as flagellin and rod proteins from five different bacteria, exhibited differential and cell type-dependent inflammasome-stimulating activity. Comprehensive profiling of the three types of NAIP ligands revealed that NAIP1 sensing of the needle protein dominated S. flexneri-induced inflammasome activation, particularly in dendritic cells. hNAIP/NAIP1 and NAIP2/5 formed a large oligomeric complex with NLRC4 in the presence of corresponding bacterial ligands, and could support reconstitution of the NLRC4 inflammasome in a ligand-specific manner.


Molecular Cell | 2009

Cullin Mediates Degradation of RhoA through Evolutionarily Conserved BTB Adaptors to Control Actin Cytoskeleton Structure and Cell Movement

Yuezhou Chen; Zhenxiao Yang; Yue Zhao; Na Dong; Hongming Yan; Liping Liu; Mingxiao Ding; H. Benjamin Peng; Feng Shao

Cul3, a Cullin family scaffold protein, is thought to mediate the assembly of a large number of SCF (Skp1-Cullin1-F-box protein)-like ubiquitin ligase complexes through BTB domain substrate-recruiting adaptors. Cul3 controls early embryonic development in several genetic models through mechanisms not understood. Very few functional substrate/adaptor pairs for Cul3 ubiquitin ligases have been identified. Here, we show that Cul3 knockdown in human cells results in abnormal actin stress fibers and distorted cell morphology, owing to impaired ubiquitination and degradation of small GTPase RhoA. We identify a family of RhoA-binding BTB domain adaptors conserved from insects to mammals, designated BACURDs. BACURDs form ubiquitin ligase complexes, which selectively ubiquitinate RhoA, with Cul3. Dysfunction of the Cul3/BACURD complex decreases cell migration potential and impairs RhoA-mediated convergent extension movements during Xenopus gastrulation. Our studies reveal a previously unknown mechanism for controlling RhoA degradation and regulating RhoA function in various biological contexts, which involves a Cul3/BACURD ubiquitin ligase complex.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Biochemical characterization of the Yersinia YopT protease: cleavage site and recognition elements in Rho GTPases.

Feng Shao; Panayiotis O. Vacratsis; Zhaoqin Bao; Katherine E. Bowers; Carol A. Fierke; Jack E. Dixon

The Gram-negative bacterial pathogen Yersinia delivers six effector proteins into the host cells to thwart the host innate immune response. One of the effectors, YopT, causes the disruption of the actin cytoskeleton and contributes to the inhibition of phagocytosis of the pathogen. YopT functions as a cysteine protease to cleave Rho family GTPases. We have analyzed the YopT cleavage products of Rho GTPases by TLC and determined their chemical structure by MS. Amino acid labeling experiments were performed to locate the exact site in RhoA where the YopT cleavage occurs. Our data unambiguously demonstrate that YopT cleaves N-terminal to the prenylated cysteine in RhoA, Rac, and Cdc42 and that the cleavage product of the GTPases is geranylgeranyl cysteine methyl ester. YopT cleaves GTP- and GDP-bound forms of RhoA equally, suggesting that the cleavage does not depend upon the conformation status of the GTPases. YopT also cleaves both farnesylated and geranylgeranylated forms of RhoA. The polybasic sequence in the C terminus of RhoA is essential for YopT substrate recognition and cleavage.

Collaboration


Dive into the Feng Shao's collaboration.

Top Co-Authors

Avatar

She Chen

Beijing Normal University

View shared research outputs
Top Co-Authors

Avatar

Yue Zhao

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Qing Yao

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Na Dong

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yan Zhou

Life Sciences Institute

View shared research outputs
Top Co-Authors

Avatar

Jieling Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wenqing Gao

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jingjin Ding

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shan Li

Hubei University of Medicine

View shared research outputs
Top Co-Authors

Avatar

Yongqun Zhu

Life Sciences Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge