Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Feng Wang is active.

Publication


Featured researches published by Feng Wang.


Circulation Research | 2015

Renal Denervation Prevents Immune Cell Activation and Renal Inflammation in Angiotensin II–Induced Hypertension

Liang Xiao; Annet Kirabo; Jing Wu; Mohamed A. Saleh; Linjue Zhu; Feng Wang; Takamune Takahashi; Roxana Loperena; Jason D. Foss; Raymond L. Mernaugh; Wei Chen; Jackson Roberts; John W. Osborn; Hana A. Itani; David G. Harrison

RATIONALE Inflammation and adaptive immunity play a crucial role in the development of hypertension. Angiotensin II and probably other hypertensive stimuli activate the central nervous system and promote T-cell activation and end-organ damage in peripheral tissues. OBJECTIVE To determine if renal sympathetic nerves mediate renal inflammation and T-cell activation in hypertension. METHODS AND RESULTS Bilateral renal denervation using phenol application to the renal arteries reduced renal norepinephrine levels and blunted angiotensin II-induced hypertension. Bilateral renal denervation also reduced inflammation, as reflected by decreased accumulation of total leukocytes, T cells, and both CD4+ and CD8+ T cells in the kidney. This was associated with a marked reduction in renal fibrosis, albuminuria, and nephrinuria. Unilateral renal denervation, which partly attenuated blood pressure, only reduced inflammation in the denervated kidney, suggesting that this effect is pressure independent. Angiotensin II also increased immunogenic isoketal-protein adducts in renal dendritic cells (DCs) and increased surface expression of costimulation markers and production of interleukin (IL)-1α, IL-1β, and IL-6 from splenic DCs. Norepinephrine also dose dependently stimulated isoketal formation in cultured DCs. Adoptive transfer of splenic DCs from angiotensin II-treated mice primed T-cell activation and hypertension in recipient mice. Renal denervation prevented these effects of hypertension on DCs. In contrast to these beneficial effects of ablating all renal nerves, renal afferent disruption with capsaicin had no effect on blood pressure or renal inflammation. CONCLUSIONS Renal sympathetic nerves contribute to DC activation, subsequent T-cell infiltration and end-organ damage in the kidney in the development of hypertension.


Journal of Organic Chemistry | 2000

Absolute configurations, predominant conformations, and tautomeric structures of enantiomeric tert-butylphenylphosphinothioic acid

Feng Wang; Prasad L. Polavarapu; Józef Drabowicz; Marian Mikołajczyk; Piotr Łyżwa

Vibrational absorption and circular dichroism spectra of dextrorotatory, levorotatory, and racemic mixture of tert-butylphenylphosphinothioic acid have been measured in CCl(4) solutions in the 2000-900 cm(-1) region. The conformations for both tautomeric structures of (S)-tert-butylphenylphosphinothioic acid are investigated using the B3LYP functional with the 6-31G* basis set. For the most stable conformation, the absorption and VCD spectra are predicted ab initio using the B3LYP functional with 6-31G*, 6-311G(2d, 2p), 6-31+G, and 6-311G(3df, 3pd) basis sets. A different functional, B3PW91, was also used with the 6-31G* basis set. The predicted spectra are compared to the experimental spectra. The comparison indicates that (-)-tert-butylphenylphosphinothioic acid is of the (S)-configuration and exists in only one tautomeric structure and one conformation in CCl(4) solution.


Magnetic Resonance Imaging | 2016

A new NOE-mediated MT signal at around −1.6 ppm for detecting ischemic stroke in rat brain

Xiao-Yong Zhang; Feng Wang; Aqeela Afzal; Junzhong Xu; John C. Gore; Daniel F. Gochberg; Zhongliang Zu

In the present work, we reported a new nuclear Overhauser enhancement (NOE)-mediated magnetization transfer (MT) signal at around -1.6ppm (NOE(-1.6)) in rat brain and investigated its application in the detection of acute ischemic stroke in rodent model. Using continuous wave (CW) MT sequence, the NOE(-1.6) is reliably detected in rat brain. The amplitude of this new NOE signal in rat brain was quantified using a 5-pool Lorentzian Z-spectral fitting method. Amplitudes of amide, amine, NOE at -3.5ppm (NOE(-3.5)), as well as NOE(-1.6) were mapped using this fitting method in rat brain. Several other conventional imaging parameters (R1, R2, apparent diffusion coefficient (ADC), and semi-solid pool size ratio (PSR)) were also measured. Our results show that NOE(-1.6), R1, R2, ADC, and APT signals from stroke lesion have significant changes at 0.5-1h after stroke. Compared with several other imaging parameters, NOE(-1.6) shows the strongest contrast differences between stroke and contralateral normal tissues and stays consistent over time until 2h after onset of stroke. Our results demonstrate that this new NOE(-1.6) signal in rat brain is a new potential contrast for assessment of acute stroke in vivo and might provide broad applications in the detection of other abnormal tissues.


Nucleic Acids Research | 2007

A study of 7-deaza-2'-deoxyguanosine–2'-deoxycytidine base pairing in DNA

Manjori Ganguly; Feng Wang; Mahima Kaushik; Michael P. Stone; Luis A. Marky; Barry Gold

The incorporation of 7-deazaguanine modifications into DNA is frequently used to probe protein recognition of H-bonding information in the major groove of DNA. While it is generally assumed that 7-deazaguanine forms a normal Watson–Crick base pair with cytosine, detailed thermodynamic and structural analyses of this modification have not been reported. The replacement of the 7-N atom on guanine with a C–H, alters the electronic properties of the heterocycle and eliminates a major groove cation-binding site that could affect the organization of salts and water in the major groove. We report herein the characterization of synthetic DNA oligomers containing 7-deazaguanine using a variety of complementary approaches: UV thermal melting, differential scanning calorimetry (DSC), circular dichroism (CD), chemical probing and NMR. The results indicate that the incorporation of a 7-deazaguanine modification has a significant effect on the dynamic structure of the DNA at the flanking residue. This appears to be mediated by changes in hydration and cation organization.


NeuroImage | 2013

Layer-specific BOLD activation in awake monkey V1 revealed by ultra-high spatial resolution functional magnetic resonance imaging

Gang Chen; Feng Wang; John C. Gore; Anna W. Roe

The laminar structure of the cortex has previously been explored both in non-human primates and human subjects using high-resolution functional magnetic resonance imaging (fMRI). However, whether the spatial specificity of the blood-oxygenation-level-dependent (BOLD) fMRI is sufficiently high to reveal lamina specific organization in the cortex reliably is still unclear. In this study we demonstrate for the first time the detection of such layer-specific activation in awake monkeys at the spatial resolution of 200 × 200 × 1000 μm(3) in a vertical 4.7 T scanner. Results collected in trained monkeys are high in contrast-to-noise ratio and low in motion artifacts. Isolation of laminar activation was aided by choosing the optimal slice orientation and thickness using a novel pial vein pattern analysis derived from optical imaging. We found that the percent change of GE-BOLD signal is the highest at a depth corresponding to layer IV. Changes in the middle layers (layer IV) were 30% greater than changes in the top layers (layers I-III), and 32% greater than the bottom layers (layers V/VI). The laminar distribution of BOLD signal correlates well with neural activity reported in the literature. Our results suggest that the high intrinsic spatial resolution of GE-BOLD signal is sufficient for mapping sub-millimeter functional structures in awake monkeys. This degree of spatial specificity will be useful for mapping both laminar activations and columnar structures in the cerebral cortex.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Injury alters intrinsic functional connectivity within the primate spinal cord

Li Min Chen; Arabinda Mishra; Pai-Feng Yang; Feng Wang; John C. Gore

Significance This is the first study, to our knowledge, to demonstrate intrinsic functional connectivity within the spinal cords of monkeys, replicating and extending recent similar discoveries in humans. Our observations of spatially correlated patterns of MRI signals at rest indicate that neurons in different parts of the spinal horns show synchronized fluctuations in activity at rest just as found in the brain. Injury to the cord disrupts the integrity of this interhorn connectivity within and across spinal segments, showing these intrinsic correlations have functional relevance and mirror behavioral deficits in the injured monkeys. Quantification of the intrinsic functional connectivity within the spine after injury therefore has considerable potential as an imaging biomarker of spinal cord functional integrity, something long needed in clinical practice. Recent demonstrations of correlated low-frequency MRI signal variations between subregions of the spinal cord at rest in humans, similar to those found in the brain, suggest that such resting-state functional connectivity constitutes a common feature of the intrinsic organization of the entire central nervous system. We report our detection of functional connectivity within the spinal cords of anesthetized squirrel monkeys at rest and show that the strength of connectivity within these networks is altered by the effects of injuries. By quantifying the low-frequency MRI signal correlations between different horns within spinal cord gray matter, we found distinct functional connectivity relationships between the different sensory and motor horns, a pattern that was similar to activation patterns evoked by nociceptive heat or tactile stimulation of digits. All horns within a single spinal segment were functionally connected, with the strongest connectivity occurring between ipsilateral dorsal and ventral horns. Each horn was strongly connected to the same horn on neighboring segments, but this connectivity reduced drastically along the spinal cord. Unilateral injury to the spinal cord significantly weakened the strength of the intrasegment horn-to-horn connectivity only on the injury side and in slices below the lesion. These findings suggest resting-state functional connectivity may be a useful biomarker of functional integrity in injured and recovering spinal cords.


Pain | 2011

High-resolution functional magnetic resonance imaging mapping of noxious heat and tactile activations along the central sulcus in New World monkeys

Li Min Chen; Barbara Dillenburger; Feng Wang; Robert M. Friedman; Malcom J. Avison

&NA; This study mapped the fine‐scale functional representation of tactile and noxious heat stimuli in cortical areas around the central sulcus of anesthetized squirrel monkeys by using high‐resolution blood oxygen level‐dependent (BOLD) fMRI at 9.4T. Noxious heat (47.5 °C) stimulation of digits evoked multiple spatially distinct and focal BOLD activations. Consistent activations were observed in areas 3a, 3b, 1, and 2, whereas less frequent activation was present in M1. Compared with tactile activations, thermal nociceptive activations covered more area and formed multiple foci within each functional area. In general, noxious heat activations in area 3b did not colocalize with tactile responses. The spatial relationships of heat and tactile activations in areas 3a and 1/2 varied across animals. Subsequent electrophysiological mapping confirmed that the evoked heat and tactile BOLD signals were somatotopically appropriate. The magnitude and temporal profiles of the BOLD signals to noxious heat stimuli differed across cortical areas. Comparatively late‐peaking but stronger signals were observed in areas 3b and 2, whereas earlier‐peaking but weaker signals were observed in areas 3a, 1, and M1. In sum, this study not only confirmed the involvement of somatosensory areas of 3a, 3b, and 1, but also identified the engagements of area 2 and M1 in the processing of heat nociceptive inputs. Differential BOLD response profiles of the individual cortical areas along the central sulcus suggest that these areas play different roles in the encoding of nociceptive inputs. Thermal nociceptive and tactile inputs may be processed by different clusters of neurons in different areas. To critically bridge animal and human pain studies, human fMRI was related to primate fMRI and electrophysiology of nociceptive processing, examining the functional role of the primary somatosensory cortex in heat nociception and demonstrating that subregion areas 3a, 3b, 1, 2, and M1 are responsive to noxious heat stimuli.


Magnetic Resonance in Medicine | 2017

MR imaging of a novel NOE-mediated magnetization transfer with water in rat brain at 9.4 T.

Xiao-Yong Zhang; Feng Wang; Tao Jin; Junzhong Xu; Jingping Xie; Daniel F. Gochberg; John C. Gore; Zhongliang Zu

To detect, map, and quantify a novel nuclear Overhauser enhancement (NOE)‐mediated magnetization transfer (MT) with water at approximately −1.6 ppm [NOE(−1.6)] in rat brain using MRI.


NMR in Biomedicine | 2017

Accuracy in the quantification of chemical exchange saturation transfer (CEST) and relayed nuclear Overhauser enhancement (rNOE) saturation transfer effects

Xiao-Yong Zhang; Feng Wang; Hua Li; Junzhong Xu; Daniel F. Gochberg; John C. Gore; Zhongliang Zu

Accurate quantification of chemical exchange saturation transfer (CEST) effects, including dipole–dipole mediated relayed nuclear Overhauser enhancement (rNOE) saturation transfer, is important for applications and studies of molecular concentration and transfer rate (and thereby pH or temperature). Although several quantification methods, such as Lorentzian difference (LD) analysis, multiple‐pool Lorentzian fits, and the three‐point method, have been extensively used in several preclinical and clinical applications, the accuracy of these methods has not been evaluated. Here we simulated multiple‐pool Z spectra containing the pools that contribute to the main CEST and rNOE saturation transfer signals in the brain, numerically fit them using the different methods, and then compared their derived CEST metrics with the known solute concentrations and exchange rates. Our results show that the LD analysis overestimates contributions from amide proton transfer (APT) and intermediate exchanging amine protons; the three‐point method significantly underestimates both APT and rNOE saturation transfer at −3.5 ppm (NOE(−3.5)). The multiple‐pool Lorentzian fit is more accurate than the other two methods, but only at lower irradiation powers (≤1 μT at 9.4 T) within the range of our simulations. At higher irradiation powers, this method is also inaccurate because of the presence of a fast exchanging CEST signal that has a non‐Lorentzian lineshape. Quantitative parameters derived from in vivo images of rodent brain tumor obtained using an irradiation power of 1 μT were also compared. Our results demonstrate that all three quantification methods show similar contrasts between tumor and contralateral normal tissue for both APT and the NOE(−3.5). However, the quantified values of the three methods are significantly different. Our work provides insight into the fitting accuracy obtainable in a complex tissue model and provides guidelines for evaluating other newly developed quantification methods.


Magnetic Resonance Imaging | 2012

Functional magnetic resonance imaging of awake monkeys: some approaches for improving imaging quality

Gang Chen; Feng Wang; Barabara C. Dillenburger; Robert M. Friedman; Li Min Chen; John C. Gore; Malcolm J. Avison; Anna W. Roe

Functional magnetic resonance imaging (fMRI) at high magnetic field strength can suffer from serious degradation of image quality because of motion and physiological noise, as well as spatial distortions and signal losses due to susceptibility effects. Overcoming such limitations is essential for sensitive detection and reliable interpretation of fMRI data. These issues are particularly problematic in studies of awake animals. As part of our initial efforts to study functional brain activations in awake, behaving monkeys using fMRI at 4.7 T, we have developed acquisition and analysis procedures to improve image quality with encouraging results. We evaluated the influence of two main variables on image quality. First, we show how important the level of behavioral training is for obtaining good data stability and high temporal signal-to-noise ratios. In initial sessions, our typical scan session lasted 1.5 h, partitioned into short (<10 min) runs. During reward periods and breaks between runs, the monkey exhibited movements resulting in considerable image misregistrations. After a few months of extensive behavioral training, we were able to increase the length of individual runs and the total length of each session. The monkey learned to wait until the end of a block for fluid reward, resulting in longer periods of continuous acquisition. Each additional 60 training sessions extended the duration of each session by 60 min, culminating, after about 140 training sessions, in sessions that last about 4 h. As a result, the average translational movement decreased from over 500 μm to less than 80 μm, a displacement close to that observed in anesthetized monkeys scanned in a 7-T horizontal scanner. Another major source of distortion at high fields arises from susceptibility variations. To reduce such artifacts, we used segmented gradient-echo echo-planar imaging (EPI) sequences. Increasing the number of segments significantly decreased susceptibility artifacts and image distortion. Comparisons of images from functional runs using four segments with those using a single-shot EPI sequence revealed a roughly twofold improvement in functional signal-to-noise-ratio and 50% decrease in distortion. These methods enabled reliable detection of neural activation and permitted blood-oxygenation-level-dependent-based mapping of early visual areas in monkeys using a volume coil. In summary, both extensive behavioral training of monkeys and application of segmented gradient-echo EPI sequence improved signal-to-noise ratio and image quality. Understanding the effects these factors have is important for the application of high field imaging methods to the detection of submillimeter functional structures in the awake monkey brain.

Collaboration


Dive into the Feng Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge